Is Soft Tissue Laxity Associated with Tissue Metal Concentrations after Total Knee Arthroplasty?

Author(s):  
Meredith Perkins ◽  
Julie Lowell ◽  
Christina Arnholt ◽  
Daniel MacDonald ◽  
Anita L. Kerkhof ◽  
...  
10.29007/mdm5 ◽  
2018 ◽  
Author(s):  
Yifei Dai ◽  
Guillaume Bras ◽  
David Liu

This observational study on fifty-six patients presents the coronal knee angular laxity measured during computer-assisted total knee arthroplasty. Varus/valgus knee laxity was assessed at extension, mid-flexion, and high flexion, and compared between arthritic knees and knees following trial TKA implantation. The data represented soft tissue laxity under surgical reality and may be used to further understand the clinical implications of intraoperative soft-tissue management. The findings highlight the potential for CAOS to accurately manage soft tissue balance in addition to bony cuts and overall alignment.


10.29007/w2b4 ◽  
2020 ◽  
Author(s):  
Yifei Dai ◽  
Charlotte Bolch ◽  
Andrew Jensen ◽  
Amaury Jung

Principal component analysis on 376 TKA knees presented the distinctive patterns and variabilities in the coronal knee angular laxity throughout the range of motion, measured post-implantation during computer-assisted total knee arthroplasty. The variability in the laxity curves were dominated by the first mode of variation (varus/valgus offset of the laxity envelope) and the second mode of variation (varus/valgus crossing pattern). Further analysis revealed that surgeon-specific impact was associated with the first mode of variation for the laxity curve, and both first and second mode of variation for the size of the laxity envelope. The results shed a light on the characteristics and variabilities of post-implantation soft-tissue laxity under surgical reality and may be used to further understand the clinical implications of intraoperative soft-tissue management.


10.29007/mrbg ◽  
2020 ◽  
Author(s):  
Bertrand Kaper

In this study, patients undergoing RA-TKA were critically assessed to understand the accuracy and precision of a simulated MR model used historically in manually instrumented TKA surgery. Using a 3mm threshold of soft-tissue laxity, knees were identified that would have been expected to require the application of a “reactive” CI-TKA surgical technique to achieve adequate soft-tissue balance.


2012 ◽  
Vol 471 (4) ◽  
pp. 1334-1342 ◽  
Author(s):  
Shigetoshi Okamoto ◽  
Ken Okazaki ◽  
Hiroaki Mitsuyasu ◽  
Shuichi Matsuda ◽  
Yukihide Iwamoto

2021 ◽  
Vol 29 (1) ◽  
pp. 230949902110020
Author(s):  
Seikai Toyooka ◽  
Hironari Masuda ◽  
Nobuhiro Nishihara ◽  
Takashi Kobayashi ◽  
Wataru Miyamoto ◽  
...  

Purpose: To evaluate the integrity of lateral soft tissue in varus osteoarthritis knee by comparing the mechanical axis under varus stress during navigation-assisted total knee arthroplasty before and after compensating for a bone defect with the implant. Methods: Sixty-six knees that underwent total knee arthroplasty were investigated. The mechanical axis of the operated knee was evaluated under manual varus stress immediately after knee exposure and after navigation-assisted implantation. The correlation between each value of the mechanical axis and degree of preoperative varus deformity was compared by regression analysis. Results: The maximum mechanical axis under varus stress immediately after knee exposure increased in proportion to the degree of preoperative varus deformity. Moreover, the maximum mechanical axis under varus stress after implantation increased in proportion to the degree of preoperative varus deformity. Therefore, the severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, regression coefficients after implantation were much smaller than those measured immediately after knee exposure (0.99 vs 0.20). Based on the results of the regression formula, the postoperative laxity of the lateral soft tissue was negligible, provided that an appropriate thickness of the implant was compensated for the bone and cartilage defect in the medial compartment without changing the joint line. Conclusion: The severity of varus knee deformity leads to a progressive laxity of the lateral soft tissue. However, even if the degree of preoperative varus deformity is severe, most cases may not require additional procedures to address the residual lateral laxity.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ran Zhao ◽  
Yanqing Liu ◽  
Hua Tian

Abstract Background Soft tissue balancing is essential for the success of total knee arthroplasty (TKA) and is mainly dependent on surgeon-defined assessment (SDA) or a gap-balancer (GB). However, an electronic sensor has been developed to objectively measure the gap pressure. This study aimed to evaluate the accuracy of soft tissue balancing using SDA and GB compared with a sensor. Methods Forty-eight patients undergoing TKA (60 knees) were prospectively enrolled. Soft tissue balancing was sequentially performed using SDA, a GB, and an electronic sensor. We compared the SDA, GB, and sensor data to calculate the sensitivity, specificity, and accuracy at 0°, 45°, 90°, and 120° flexion. Cumulative summation (CUSUM) analysis was performed to assess the surgeon’s performance during the sensor introductory phase. Results The sensitivity of SDA was 63.3%, 68.3%, 80.0%, and 80.0% at 0°, 45°, 90°, and 120°, respectively. The accuracy of the GB compared with sensor data was 76.7% and 71.7% at 0° and 90°, respectively. Cohen’s kappa coefficient for the accuracy of the GB was 0.406 at 0° (moderate agreement) and 0.227 at 90° (fair agreement). The CUSUM 0° line achieved good prior performance at case 45, CUSUM 90° and 120° showed a trend toward good prior performance, while CUSUM 45° reached poor prior performance at case 8. Conclusion SDA was a poor predictor of knee balance. GB improved the accuracy of soft tissue balancing, but was still less accurate than the sensor, particularly for unbalanced knees. SDA improved with ongoing use of the sensor, except at 45° flexion.


Arthroplasty ◽  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Goki Kamei ◽  
Shigeki Ishibashi ◽  
Koki Yoshioka ◽  
Satoru Sakurai ◽  
Hiroyuki Inoue ◽  
...  

Abstract Background In total knee arthroplasty (TKA) using the modified gap technique, the soft-tissue balance is measured after osteotomy of the distal femur and proximal tibia (conventional bone gap). However, after osteotomy, the flexion gap size during 90° knee flexion may be larger than that observed after implantation. The tension of the lateral compartment during 90° flexion may also be reduced after osteotomy of the distal femur. We manufactured a distal femoral trial component to reproduce the condition after implantation and prior to posterior condyle osteotomy. This study aimed to evaluate the effect of the trial component on the flexion gap. Methods This prospective study included 21 consecutive patients aged 78 years with medial osteoarthritis who underwent cruciate-retaining TKA between February 2017 and March 2018. The postoperative flexion gap size and inclination during 90° flexion were compared between cases with and without the trial component. Results The mean joint gap size with the trial component (13.4 ± 0.80 mm) was significantly smaller than that without the trial component (14.7 ± 0.84 mm). The mean gap inclination angle with the trial component (3.7° ± 0.62°) was significantly smaller than that without the trial component (5.5° ± 0.78°). Conclusions In the present study, the joint gap size and medial tension were significantly reduced after the trial component had been set. Accurate measurement of the soft-tissue balance is an important factor in the modified gap technique, and this method using a distal femoral trial component can offer better outcomes than those achieved with conventional methods.


2016 ◽  
Vol 24 (8) ◽  
pp. 2525-2531 ◽  
Author(s):  
Friedrich Boettner ◽  
Lisa Renner ◽  
Danik Arana Narbarte ◽  
Claus Egidy ◽  
Martin Faschingbauer

Sign in / Sign up

Export Citation Format

Share Document