BUONGIORNO'S NANOFLUID MODEL FOR MIXED CONVECTION FLOW OVER A VERTICAL POROUS WEDGE WITH CONVECTIVE BOUNDARY CONDITIONS

2020 ◽  
Vol 23 (10) ◽  
pp. 1001-1014
Author(s):  
Sameh Elsayed Ahmed ◽  
A. Mahdy
2021 ◽  
Author(s):  
M. Ferdows ◽  
Bader Alshuraiaan ◽  
Nayema Islam Nima

Abstract This paper discusses an investigation of the influence of dispersion impact on mixed convection flow over a horizontal cone within a non-Darcy porous medium subjected to convective boundary conditions. By imposing appropriate similarity transformations, the nonlinear partial differential equations governing flow, temperature, concentration, and microbe fields are reduced to a system of ordinary differential equations, which are then solved using the MATLAB BVP4C function. In a few circumstances, the research is brought to a strong conclusion by comparing the findings of the current study to previously published works. Mixed convection parameter λ, buoyancy parameters N1,N2, Lewis parameter Le, bioconvection lewis parameter Lb, Bioconvection peclet number Pe, Biot number Bi, Biot number of Mass transfer Bi,m and also Biot number of motile microorganism transfer Bi,n are all numerically calculated for various values of the dimensionless parameters of the problem. The results also reveal that, in the presence of dispersion effects, these parameters greatly influence the heat, mass, and motile microorganism transfer rates, as well as the corresponding velocity, temperature, concentration, and motile microorganism profiles.


2019 ◽  
Vol 4 (2) ◽  
pp. 475-488
Author(s):  
K. Kaladhar ◽  
E. Komuraiah ◽  
K. Madhusudhan Reddy

AbstractThis analysis is to study the incompressible mixed convection laminar Newtonian flow through concentric cylindrical annulus associated with slip and convective boundary conditions. This presentation considered the cross diffusions and chemical reaction effects also. The fluid flow in an annulus is due to the rotation of the outer cylinder with constant velocity. The analysis of such kind of fluid flow is governed by nonlinear partial differential equations. The governing system of equations were mapped into dimensionless system with appropriate transformations. The system has been solved using Homotopy Analysis Method (HAM). The influence of Soret, Dufour, slip parameter and the chemical reaction parameter on velocity, temperature and concentration are investigated, and presented through plots. The maximum values of slip leads to increase in velocity and temperature profiles. Further the impact of boundary conditions on velocity, temperature and concentration are also presented.


Sign in / Sign up

Export Citation Format

Share Document