EXPERIMENTAL STUDY OF HEAT TRANSFER IN LAMINAR FALLING FILMS AT HIGH PRANDTL NUMBERS

2000 ◽  
Vol 12 (3-4) ◽  
pp. 16
Author(s):  
Kemal Tuzla ◽  
Thomas R. Palmer ◽  
John C. Chen
1983 ◽  
Vol 105 (3) ◽  
pp. 433-439 ◽  
Author(s):  
N. Seki ◽  
S. Fukusako ◽  
A. Yamaguchi

Experimental measurements are presented for free convective heat transfer across a parallelogrammic enclosure with the various tilt angles of parallel upper and lower walls insulated. The experiments covered a range of Rayleigh numbers between 3.4 × 104 and 8.6 × 107, and Prandtl numbers between 0.70 and 480. Those also covered the tilt angles of the parallel insulated walls with respect to the horizontal, φ, of 0, ±25, ±45, ±60, and ±70 deg under an aspect ratio of H/W = 1.44. The fluids used were air, transformer oil, and water. It was found that the heat transfer coefficients for φ = −70 deg were decreased to be about 1/18 times those for φ = 0 deg. Experimental results are given as plots of the Nusselt number versus the Rayleigh number. A correlation equation is given for the Nusselt number, Nu, as a function of φ, Pr, and Ra.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2010 ◽  
Vol 41 (8) ◽  
pp. 889-900 ◽  
Author(s):  
Daniel Thibault ◽  
Matthieu Fenot ◽  
Gildas Lalizel ◽  
Eva Dorignac

Sign in / Sign up

Export Citation Format

Share Document