An Experimental Study of Free Corrective Heat Transfer in a Parallelogrammic Enclosure

1983 ◽  
Vol 105 (3) ◽  
pp. 433-439 ◽  
Author(s):  
N. Seki ◽  
S. Fukusako ◽  
A. Yamaguchi

Experimental measurements are presented for free convective heat transfer across a parallelogrammic enclosure with the various tilt angles of parallel upper and lower walls insulated. The experiments covered a range of Rayleigh numbers between 3.4 × 104 and 8.6 × 107, and Prandtl numbers between 0.70 and 480. Those also covered the tilt angles of the parallel insulated walls with respect to the horizontal, φ, of 0, ±25, ±45, ±60, and ±70 deg under an aspect ratio of H/W = 1.44. The fluids used were air, transformer oil, and water. It was found that the heat transfer coefficients for φ = −70 deg were decreased to be about 1/18 times those for φ = 0 deg. Experimental results are given as plots of the Nusselt number versus the Rayleigh number. A correlation equation is given for the Nusselt number, Nu, as a function of φ, Pr, and Ra.

1959 ◽  
Vol 81 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Samuel Globe ◽  
David Dropkin

This paper presents results of an experimental investigation of convective heat transfer in liquids placed between two horizontal plates and heated from below. The liquids used were water, silicone oils of 1.5, 50, and 1000 centistoke kinematic viscosities, and mercury. The experiments covered a range of Rayleigh numbers between 1.51(10)5 and 6.76(10)8. and Prandtl numbers between 0.02 and 8750. Tests were made in cylindrical containers having copper tops and bottoms and insulating walls. For water and silicone oils the container was 5 in. in diam and 2 in. high. For mercury, two containers were used, both 5.28 in. in diameter, but one 1.39 in. high and another 2.62 in. high. In all cases the bottom plates were heated by electric heaters. The top plates were air-cooled for the water and silicone-oil experiments and water-cooled for the mercury tests. To prevent amalgamation, the copper plates of the mercury container were chromium plated. Surface temperatures were measured by thermocouples embedded in the plates. The test results indicate that the heat-transfer coefficients for all liquids investigated may be determined from the relationship Nu=0.069Ra13Pr0.074 In this equation the Nusselt and Rayleigh numbers are based on the distance between the copper plates. The results of this experiment are in reasonable agreement with the data reported by others who used larger containers and different fluids.


1965 ◽  
Vol 87 (1) ◽  
pp. 77-82 ◽  
Author(s):  
D. Dropkin ◽  
E. Somerscales

This paper presents results of an experimental investigation of convective heat transfer in liquids confined by two parallel plates and inclined at various angles with respect to the horizontal. The experiments covered a range of Rayleigh numbers between 5(10)4 and 7.17(10)8, and Prandtl numbers between 0.02 and 11,560. Tests were made in rectangular and circular containers having copper plates and insulating walls. The liquids used were water, silicone oils, and mercury. The test results indicate that the heat transfer coefficients for all liquids investigated at the various angles, from horizontal to vertical, may be determined from the relationship Nu=C(Ra)1/3(Pr)0.074 The constant, C, is a function of the angle of inclination. It varies from C = 0.069 for the horizontal case when heated from below to C = 0.049 for the vertical case. For the test cells used, no effect on the Nusselt number had been detected for the vertical case by the change of the ratio of height of cell to distance between plates. The ratio for these tests was varied from 4.41 to 16.56.


1987 ◽  
Vol 109 (2) ◽  
pp. 388-391 ◽  
Author(s):  
E. M. Sparrow ◽  
M. A. Ansari

Measurements were made of the combined natural convection and radiation heat transfer from a horizontal finned tube situated in a vertical channel open at the top and bottom. In one set of experiments, both walls of the channel were heavily insulated, while in a second set of experiments, one of the insulated walls was replaced by an uninsulated metallic sheet. In general, the heat transfer coefficients were found to be lower with the metal wall in place, but only moderately. With the finned tube situated at the bottom of the channel, the differences in the heat transfer coefficients corresponding to the two types of walls were only a few percent. When the tube was positioned at the mid-height of the channel, larger differences were encountered, but in the practical range of Rayleigh numbers, the differences did not exceed 5 percent.


Author(s):  
David M. Sykes ◽  
Andrew L. Carpenter ◽  
Gregory S. Cole

Microchannels and minichannels have been shown to have many potential applications for cooling high-heat-flux electronics over the past 3 decades. Synthetic jets can enhance minichannel performance by adding net momentum flux into a stream without adding mass flux. These jets are produced because of different flow patterns that emerge during the induction and expulsion stroke of a diaphragm, and when incorporated into minichannels can disrupt boundary layers and impinge on the far wall, leading to high heat transfer coefficients. Many researchers have examined the effects of synthetic jets in microchannels and minichannels with single-phase flows. The use of synthetic jets has been shown to augment local heat transfer coefficients by 2–3 times the value of steady flow conditions. In this investigation, local heat transfer coefficients and pressure loss in various operating regimes were experimentally measured. Experiments were conducted with a minichannel array containing embedded thermocouples to directly measure local wall temperatures. The experimental range extends from transitional to turbulent flows. Local wall temperature measurements indicate that increases of heat transfer coefficient of over 20% can occur directly below the synthetic jet with low exit qualities. In this study, the heat transfer augmentation by using synthetic jets was dictated by the momentum ratio of the synthetic jet to the bulk fluid flow. As local quality was increased, the heat transfer augmentation dropped from 23% to 10%. Surface tension variations had a large effect on the Nusselt number, while variations in inertial forces had a small effect on Nusselt number in this operating region.


1979 ◽  
Vol 101 (2) ◽  
pp. 211-216 ◽  
Author(s):  
N. Cur ◽  
E. M. Sparrow

The heat transfer and pressure drop characteristics for an array of colinear, equally spaced plates aligned parallel to the flow in a flat rectangular duct have been studied experimentally. The periodic interruptions (i.e., the gaps between the plates) preclude the attainment of hydrodynamic and thermal development of the type that is encountered in conventional duct flows, but a periodic fully developed regime can exist. Measurements of the heat transfer coefficients for the successive plates of the array affirmed the periodically developed regime and demonstrated the developmental pattern leading to its attainment. The thickness of the plates in the array was varied parametrically. In general, the Nusselt number increases with plate thickness. Thickness-related increases in the fully developed Nusselt number of up to 65 percent were encountered. The presence of the interruptions serves to augment the heat transfer coefficients. In the fully turbulent regime, the heat transfer coefficients are on the order of twice those for a conventional duct flow. The pressure drop also increases with the plate thickness.


Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 689 ◽  
Author(s):  
Arianna Parrales ◽  
José Hernández-Pérez ◽  
Oliver Flores ◽  
Horacio Hernandez ◽  
José Gómez-Aguilar ◽  
...  

In this study, two empirical correlations of the Nusselt number, based on two artificial neural networks (ANN), were developed to determine the heat transfer coefficients for each section of a vertical helical double-pipe evaporator with water as the working fluid. Each ANN was obtained using an experimental database of 1109 values obtained from an evaporator coupled to an absorption heat transformer with energy recycling. The Nusselt number in the annular section was estimated based on the modified Wilson plot method solved by an ANN. This model included the Reynolds and Prandtl numbers as input variables and three neurons in their hidden layer. The Nusselt number in the inner section was estimated based on the Rohsenow equation, solved by an ANN. This ANN model included the numbers of the Prandtl and Jackob liquids as input variables and one neuron in their hidden layer. The coefficients of determination were R 2 > 0.99 for both models. Both ANN models satisfied the dimensionless condition of the Nusselt number. The Levenberg–Marquardt algorithm was chosen to determine the optimum values of the weights and biases. The transfer functions used for the learning process were the hyperbolic tangent sigmoid in the hidden layer and the linear function in the output layer. The Nusselt numbers, determined by the ANNs, proved adequate to predict the values of the heat transfer coefficients of a vertical helical double-pipe evaporator that considered biphasic flow with an accuracy of ±0.2 for the annular Nusselt and ±4 for the inner Nusselt.


Sign in / Sign up

Export Citation Format

Share Document