COMPARISONS OF PREDICTIONS WITH EXPERIMENTAL DATA SET NO.1: PRESSURE DROP AND ENTRAINED FRACTION IN FULLY DEVELOPED FLOW

1992 ◽  
Vol 6 (1-4) ◽  
pp. 5-13
Author(s):  
Theo G. Theofanous ◽  
W. H. Amarasooriya
2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Basma Baioumy ◽  
Rachid Chebbi ◽  
Nabil Abdel Jabbar

Abstract Laminar Bingham fluid flow in the entrance region of a circular pipe is investigated using a momentum integral model. The fully developed flow is uniform in the core region, while the velocity changes in the annular part of the cross section of the pipe. The inlet-filled region concept is adopted. In the inlet region, the boundary layer thickness increases until the size of the plug flow area reaches the fully developed flow size. The model converges to the fully developed solution in the filled region. The model provides the velocity, pressure drop, and skin friction coefficient profiles. The pressure drop results are in good agreement with published experimental data. The flow results asymptotically converge to the fully developed values. In addition, the results are consistent with published Newtonian fluid flow experimental data and theoretical results for the boundary layer thickness, pressure drop, and centerline velocity for small values of the Bingham number.


Author(s):  
A. Tamayol ◽  
M. Bahrami

In this study, fully-developed flow parallel to ordered fibrous structures is investigated analytically. The considered fibrous media are made up of inline (square), staggered, and hexagonal arrays of cylinders. Starting from the general solution of Poisson’s equation, compact analytical solutions are proposed for both velocity distribution and permeability of the considered structures. In addition, independent numerical simulations are performed for the considered patterns over the entire range of porosity and the results are compared with the proposed solutions. The developed models are successfully verified through comparison with existing experimental data, collected by others, and the present numerical results over a wide range of porosity. The results show that for the ordered arrangements with high porosity, the parallel permeability is independent of the microstructure geometry; on the other hand, for lower porosities the hexagonal arrays results in lower pressure drop, as expected.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Rodolfo Vaghetto ◽  
Philip Jones ◽  
Nolan Goth ◽  
Mason Childs ◽  
Saye Lee ◽  
...  

To achieve longer-life liquid-metal fast reactor cores, designers are considering to increase the wall gap of the wire-wrapped hexagonal fuel bundles to account for volumetric void swelling and radiation creep. A new wire-wrapped hexagonal test bundle has been constructed, with a wall gap larger than prior experiments, and experimental pressure drop data have been generated under laminar, transition, and turbulent flow regimes (corresponding to Re of 250–19,000), to complement the existing database of small wall gap experimental bundles. The comparison of the experimental data set with the predictions of four existing correlations (Baxi and Dalle Donne, Cheng and Todreas detailed (CTD), Kirillov, and Rehme) showed general agreement between data and the selected correlations. However, the CTD correlation most accurately predicted the experimental trend and the transition between flow regimes. The analysis of the experimental data also revealed that the larger wall gap size caused a lower bundle pressure drop due to the increased bypass flow area.


Author(s):  
A. Tamayol ◽  
M. Bahrami

Analytical solutions are presented for laminar fully-developed flow in micro/minichannels of hyperelliptical and regular polygonal cross-sections. The considered geometries cover a wide range of common simply connected shapes including circle, ellipse, rectangle, rhomboid, star-shape, equilateral triangle, square, pentagon, and hexagon. Therefore, the present approach can be considered as a general solution. Predicted results for the velocity distribution and pressure drop are successfully compared with existing analytical solutions and experimental data collected from various sources for a variety of geometries, including: polygonal, rectangular, circular, elliptical, and rhombic cross-sections.


1992 ◽  
Vol 6 (1-4) ◽  
pp. 257-301 ◽  
Author(s):  
Akimi Serizawa ◽  
Isao Kataoka ◽  
Itaru Michiyoshi

Sign in / Sign up

Export Citation Format

Share Document