EVALUATION OF ENERGY EFFICIENCY OF THE ALUMINOTHERMIC PROCESS OF PRODUCING METAL COMPOSITE MATERIALS BY THE CRITERIA OF THE MAXIMUM SELF-HEATING TEMPERATURE AND THE AGGREGATE STATE OF OXYGEN EXCHANGE REACTION PRODUCTS

Author(s):  
Yu. A. Abuzin ◽  
M. M. Karashaev ◽  
R. A. Sokolov
2021 ◽  
pp. 36-45
Author(s):  
E.I. Krasnov ◽  
◽  
V.M. Serpova ◽  
L.G. Khodykin ◽  
A.V. Gololobov ◽  
...  

Presents a literature review in the field of methods for strengthening titanium and its alloys by introducing various refractory particles into the matrix. The main problematic issues related to the chemical nature of refractory particles and titanium alloys that arise during hardening are briefly described. The main structural, physical and mechanical properties and morphology of such metal composite materials are described. The dependence of the influence of various refractory particles and their amount, as well as the effect of heat treatment on the physical and mechanical properties of microns based on titanium alloys, is presented.


2011 ◽  
Vol 261-263 ◽  
pp. 613-617
Author(s):  
Fu Sheng Hao ◽  
Shi Wu Gao ◽  
Ke Liang Ren

The paper use the finite element method, simulating the solidification process of metal matrix composite. Obtain the changing of temperature field about the solidification process and some temperature curve for special nodes. The results show that, due to the difference of heat transfer coefficient about the matrix and the metal the solidification process for composite materials showed the irregular temperature cloud, namely nonlinear temperature distribution. The simulation actually provides some guidance for synthesis of metal composite materials.


Sign in / Sign up

Export Citation Format

Share Document