ANALYSIS OF FLUID FLOW AND ENTROPY GENERATION OF A MHD NANOFLUID THROUGH A VERTICAL CHANNEL WITH DEFORMABLE POROUS MEDIUM

2020 ◽  
Vol 11 (3) ◽  
pp. 223-245
Author(s):  
V. Manoj Kumar Uppuluri ◽  
S. Sreenadh ◽  
G. Gopi Krishna
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gamal M. Abdel-Rahman Rashed

Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were presented graphically.


2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


Sign in / Sign up

Export Citation Format

Share Document