Radiative MHD unsteady casson fluid flow with heat source/sink through a vertical channel suspended in porous medium subject to generalized boundary conditions

2021 ◽  
Author(s):  
Asifa Asifa ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Wiboonsak Watthayu ◽  
Talha Anwar
2021 ◽  
Vol 408 ◽  
pp. 33-49
Author(s):  
Lazarus Rundora

This article analyses the thermal decomposition in an unsteady MHD mixed convection flow of a reactive, electrically conducting Casson fluid within a vertical channel filled with a saturated porous medium and the influence of the temperature dependent properties on the flow. The fluid is assumed to be incompressible with the viscosity coefficient varying exponentially with temperature. The flow is subjected to an externally applied uniform magnetic field. The exothermic chemical kinetics inherent in the flow system give rise to heat dissipation. A technique based on a semi-discretization finite difference scheme and the shooting method is applied to solve the dimensionless governing equations. The effects of the temperature dependent viscosity, the magnetic field and other important parameters on the velocity and temperature profiles, the wall shear stress and the wall heat transfer rate are presented graphically and discussed quantitatively and qualitatively. The fluid flow model revealed flow characteristics that have profound ramifications including the increased heat transfer enhancement attributes of the reactive temperature dependent viscosity Casson fluid flow.


Author(s):  
Sharad Sinha ◽  
R. S. Yadav

A viscous electrically conducting fluid is considered and its steady mixed convective flow along a vertical stretching cylinder is investigated. It is assumed that the cylinder is embedded in a porous medium and, external magnetic field, heat source/sink are also taken into account. Suitable similarity transformations are used to reduce the governing equations and associated boundary conditions into a system of nonlinear ordinary differential equations. This system along with the boundary conditions is solved by fourth order Runge-Kutta method with shooting technique. Variations in fluid velocity and temperature due to various physical parameters such as heat source/sink parameter, mixed convection parameter, magnetic parameter are presented through graphs. Effect of these parameters on dimensionless shear stress and rate of heat transfer are discussed numerically through tables.


Sign in / Sign up

Export Citation Format

Share Document