Principles and Method of Forecasting the Critical Frequency Variations of the Mid-Latitude Ionospheric F2 Region From Solar and Geomagnetic Activity Indices

1999 ◽  
Vol 53 (1) ◽  
pp. 13-16
Author(s):  
I. G. Zakharov ◽  
O. F. Tyrnov
2015 ◽  
Vol 55 (4) ◽  
pp. 493-498 ◽  
Author(s):  
A. A. Nusinov ◽  
N. M. Rudneva ◽  
E. A. Ginzburg ◽  
L. A. Dremukhina

2020 ◽  
Vol 10 ◽  
pp. 52
Author(s):  
Alessandro Ippolito ◽  
Loredana Perrone ◽  
Christina Plainaki ◽  
Claudio Cesaroni

The variations of the hourly observations of the critical frequency foF2, recorded at the Ionospheric Observatory of Rome by the AIS-INGV ionosonde (geographic coordinates 41.82° N, 12.51° E; geomagnetic coordinates 41.69° N, 93.97° E) during the low activity periods at the turn of solar cycles 21–22, 22–23 and 23–24, are investigated. Deviations of foF2 greater than ± 15% with respect to a background level, and with a minimum duration of 3 h, are here considered anomalous. The dependence of these foF2 anomalies on geomagnetic activity has been accurately investigated. Particular attention has been paid to the last deep solar minimum 2007–2009, in comparison with the previous solar cycle minima. The lack of day-time anomalous negative variations in the critical frequency of the F2 layer, is one of the main findings of this work. Moreover, the analysis of the observed foF2 anomalies confirms the existence of two types of positive F2 layer disturbances, characterised by different morphologies and, different underlying physical processes. A detailed analysis of four specific cases allows the definition of possible scenarios for the explanation of the mechanisms behind the generation of the foF2 anomalies.


Solar Physics ◽  
2009 ◽  
Vol 258 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Mohammadmahdi Rezaei Yousefi ◽  
Babak Salehi Kasmaei ◽  
Abdolhossein Vahabie ◽  
Caro Lucas ◽  
Babak Nadjar Araabi

Solar Physics ◽  
2011 ◽  
Vol 271 (1-2) ◽  
pp. 183-195 ◽  
Author(s):  
G. Verbanac ◽  
M. Mandea ◽  
B. Vršnak ◽  
S. Sentic

2012 ◽  
Vol 30 (2) ◽  
pp. 343-355 ◽  
Author(s):  
M. Pietrella

Abstract. A short-term ionospheric forecasting empirical regional model (IFERM) has been developed to predict the state of the critical frequency of the F2 layer (foF2) under different geomagnetic conditions. IFERM is based on 13 short term ionospheric forecasting empirical local models (IFELM) developed to predict foF2 at 13 ionospheric observatories scattered around the European area. The forecasting procedures were developed by taking into account, hourly measurements of foF2, hourly quiet-time reference values of foF2 (foF2QT), and the hourly time-weighted accumulation series derived from the geomagnetic planetary index ap, (ap(τ)), for each observatory. Under the assumption that the ionospheric disturbance index ln(foF2/foF2QT) is correlated to the integrated geomagnetic disturbance index ap(τ), a set of statistically significant regression coefficients were established for each observatory, over 12 months, over 24 h, and under 3 different ranges of geomagnetic activity. This data was then used as input to compute short-term ionospheric forecasting of foF2 at the 13 local stations under consideration. The empirical storm-time ionospheric correction model (STORM) was used to predict foF2 in two different ways: scaling both the hourly median prediction provided by IRI (STORM_foF2MED,IRI model), and the foF2QT values (STORM_foF2QT model) from each local station. The comparison between the performance of STORM_foF2MED,IRI, STORM_foF2QT, IFELM, and the foF2QT values, was made on the basis of root mean square deviation (r.m.s.) for a large number of periods characterized by moderate, disturbed, and very disturbed geomagnetic activity. The results showed that the 13 IFELM perform much better than STORM_foF2,sub>MED,IRI and STORM_foF2QT especially in the eastern part of the European area during the summer months (May, June, July, and August) and equinoctial months (March, April, September, and October) under disturbed and very disturbed geomagnetic conditions, respectively. The performance of IFELM is also very good in the western and central part of the Europe during the summer months under disturbed geomagnetic conditions. STORM_foF2MED,IRI performs particularly well in central Europe during the equinoctial months under moderate geomagnetic conditions and during the summer months under very disturbed geomagnetic conditions. The forecasting maps generated by IFERM on the basis of the results provided by the 13 IFELM, show very large areas located at middle-high and high latitudes where the foF2 predictions quite faithfully match the foF2 measurements, and consequently IFERM can be used for generating short-term forecasting maps of foF2 (up to 3 h ahead) over the European area.


2017 ◽  
Vol 3 (4) ◽  
pp. 74-81
Author(s):  
Марат Деминов ◽  
Marat Deminov ◽  
Галина Деминова ◽  
Galina Deminova ◽  
Виктор Депуев ◽  
...  

We put forward a method of separating the geomagnetic activity contribution to the F2-layer critical frequency median, foF2med, at middle latitudes. It is based on the analysis of dfoF2, which is the ratio foF2med/foF2q in percent, where foF2q is the F2-layer critical frequency for quiet conditions. The quantities foF2q and dfoF2 depend on solar and geomagnetic activity respectively. These dependences are taken into account using indices F12 (the average over 12 months flux of solar radiation at 10.7 cm) and Apm (the average over a month value of Ap-index), thus facilitating the use of this method for forecasting foF2med. With this method, from Slough station (51.5° N, 0.6° W) data for midday and midnight for 1954 to 1995 we have found that at midnight the dfoF2 dependence on Apm is significant at the 95 % confidence level for equinoxes and summer. For midday, this dependence is less pronounced and is significant only from April to July. At equinoxes and summer, an Apm increase causes a dfoF2 decrease. For midnight, this feature is more pronounced than for midday. This regularity is valid also for annual average Apm and dfoF2.


Sign in / Sign up

Export Citation Format

Share Document