Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete

2015 ◽  
Vol 49 (4) ◽  
pp. 1221-1233 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Payam Shafigh ◽  
Bee Chin Ang ◽  
Ming Chian Yew
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

This paper presents the effects of low volume fraction(Vf)of polyvinyl alcohol (PVA) fibers on the mechanical properties of oil palm shell (OPS) high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC) high strength lightweight concrete (HSLWC) subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E) value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Kun Yew ◽  
Hilmi Bin Mahmud ◽  
Bee Chin Ang ◽  
Ming Chian Yew

The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (duraandtenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushedduraOPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Mehdi Maghfouri ◽  
Payam Shafigh ◽  
Muhammad Aslam

Oil palm shell (OPS) is a biosolid waste in palm oil industry in the tropical countries which could be used as aggregate in concrete mixture. Since 1984, OPS has been experimented as natural lightweight aggregate in research studies to produce lightweight concrete (LWC). Medium and high-strength LWCs using OPS as coarse aggregate were successfully produced. However, higher drying shrinkage and lower mechanical properties for concretes containing higher volume of OPS are reported in previous studies. Therefore, OPS is not fit to be used as full coarse aggregate in concrete mixture and therefore, there should be an optimum OPS content in concrete. In this study, in a normal-weight concrete, normal coarse aggregate was replaced with OPS from zero to 100% with an interval of 20%. Tests such as slump, density, compressive strength in different curing conditions, splitting tensile strength, initial and final water absorptions, and drying shrinkage of cured and uncured specimens were conducted to find out optimum OPS content in concrete. From the test results, it could be summarized that OPS content should not exceed 60% of total volume of coarse aggregate.


2011 ◽  
Vol 32 (10) ◽  
pp. 4839-4843 ◽  
Author(s):  
Payam Shafigh ◽  
Mohd Zamin Jumaat ◽  
Hilmi Bin Mahmud ◽  
U. Johnson Alengaram

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Michael Yong Jing Liu ◽  
Choon Peng Chua ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat

Traditionally fly ash (FA) has been used to replace cement as binder in the geopolymer concrete. The utilization of palm oil industrial waste materials known as palm oil fuel ash (POFA) and oil palm shell (OPS) that are abundantly available in South East Asia as binder and coarse aggregate in geopolymer concrete would give an added advantage in both the environmental and economic aspects. The mechanical properties of the OPS geopolymer concrete (OPSGC) through the use of POFA, FA, and OPS are investigated and reported. A total of ten OPSGC mixtures were prepared with varying percentages of POFA and FA such as 0, 10, 20, 40, and 100%. The specimens prepared with two alkaline solution to binder (AK/B) ratios of 0.35 and 0.55 were oven cured at 65°C for 48 hours. The experimental results showed that the highest compressive strength of 30 MPa was obtained for the mix with 20% replacement of FA by POFA and AK/B ratio of 0.55, which underwent oven curing. Further, the mix of up to 20% POFA (with AK/B ratio of 0.55) can be categorized as structural lightweight concrete. An increase of the POFA content beyond 20% decreases the mechanical properties, and hence this mix is recommended to be used.


2017 ◽  
Vol 67 (328) ◽  
pp. 142 ◽  
Author(s):  
S. Poh-Yap ◽  
U. Johnson-Alengaram ◽  
K. Hung-Mo ◽  
M. Zamin-Jumaat

The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC) has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC). The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.


2018 ◽  
Vol 161 ◽  
pp. 452-460 ◽  
Author(s):  
Yasmine Binta Traore ◽  
Adamah Messan ◽  
Kinda Hannawi ◽  
Jean Gerard ◽  
William Prince ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document