Short- and long-term restrained shrinkage cracking of fiber reinforced concrete composite metal decks: an experimental study

2017 ◽  
Vol 50 (2) ◽  
Author(s):  
Salah Altoubat ◽  
Klaus-Alexander Rieder ◽  
M. Talha Junaid
2013 ◽  
Vol 327 ◽  
pp. 201-204
Author(s):  
Jin Song Shi ◽  
Bo Yuan ◽  
Da Zhang Wang ◽  
Zhe An Lu

In order to investigate the difference of current toughness index standards for fiber reinforced concrete, two main groups of specimens were made to take bending toughness test with the requirements of corresponded standards, loading methods and loading speeds, which are ASTM C1018 in America, ACI 544 and JSCE G552 in Japan. United with software Origin, the load-deflection curves gathered from bending test was calculated with relative standards. The results show that the calculated toughness index value with ASTM C1018-98 in America is more accurate with three grades but the requested deflection of testing is much longer than others while ACI 544 and JSCE G552 in Japan are quite the contrary.


2019 ◽  
Vol 196 ◽  
pp. 649-658 ◽  
Author(s):  
D.H. Monetti ◽  
A. Llano-Torre ◽  
M.C. Torrijos ◽  
G. Giaccio ◽  
R. Zerbino ◽  
...  

2006 ◽  
Vol 33 (2) ◽  
pp. 126-133 ◽  
Author(s):  
N Banthia ◽  
R Gupta ◽  
S Mindess

Early age shrinkage cracking remains a critical concern for cement-based repairs and overlays. Fibers mitigate such cracking, but no standardized technique of assessing the performance of a given fiber exists. Recently, a novel technique of making such an assessment was developed at The University of British Columbia (UBC). In this test method, currently being balloted through the ASTM, an overlay of fiber reinforced concrete (FRC) material to be tested is cast directly on a fully matured sub-base with protuberances, and the entire assembly is subjected to controlled drying. Cracking in the overlay is then monitored and characterized. The technique was recently employed to develop "crack-free" overlay materials for two repair sites. One was a parking garage in Downtown Vancouver, British Columbia, and the other was the plaza deck at The UBC Aquatic Center. For the parking garage, a carbon fiber reinforced concrete and for the plaza deck, a cellulose fiber reinforced concrete were developed. Both overlays were instrumented with strain sensors and data were monitored over the Internet.Key words: fiber reinforced concrete, shrinkage cracking, strain monitoring, carbon fibers, cellulose fibers.


Sign in / Sign up

Export Citation Format

Share Document