Investigating Bone Morphogenetic Protein (BMP) Signaling in a Newly Established Human Cell Line Expressing BMP Receptor Type II

2010 ◽  
Vol 222 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Tada-aki Kudo ◽  
Hiroyasu Kanetaka ◽  
Akira Watanabe ◽  
Ayako Okumoto ◽  
Masanobu Asano ◽  
...  
2010 ◽  
Vol 285 (48) ◽  
pp. 37641-37649 ◽  
Author(s):  
Hannah J. Durrington ◽  
Paul D. Upton ◽  
Simon Hoer ◽  
Jessica Boname ◽  
Benjamin J. Dunmore ◽  
...  

Endocrinology ◽  
2020 ◽  
Vol 161 (7) ◽  
Author(s):  
Gauthier Schang ◽  
Luisina Ongaro ◽  
Hailey Schultz ◽  
Ying Wang ◽  
Xiang Zhou ◽  
...  

Abstract Activins are selective regulators of FSH production by pituitary gonadotrope cells. In a gonadotrope-like cell line, LβT2, activins stimulate FSH via the activin type IIA receptor (ACVR2A) and/or bone morphogenetic protein type II receptor (BMPR2). Consistent with these observations, FSH is greatly reduced, though still present, in global Acvr2a knockout mice. In contrast, FSH production is unaltered in gonadotrope-specific Bmpr2 knockout mice. In light of these results, we questioned whether an additional type II receptor might mediate the actions of activins or related TGF-β ligands in gonadotropes. We focused on the activin type IIB receptor (ACVR2B), even though it does not mediate activin actions in LβT2 cells. Using a Cre-lox strategy, we ablated Acvr2a and/or Acvr2b in murine gonadotropes. The resulting conditional knockout (cKO) animals were compared with littermate controls. Acvr2a cKO (cKO-A) females were subfertile (~70% reduced litter size), cKO-A males were hypogonadal, and both sexes showed marked decreases in serum FSH levels compared with controls. Acvr2b cKO (cKO-B) females were subfertile (~20% reduced litter size), cKO-B males had a moderate decrease in testicular weight, but only males showed a significant decrease in serum FSH levels relative to controls. Simultaneous deletion of both Acvr2a and Acvr2b in gonadotropes led to profound hypogonadism and FSH deficiency in both sexes; females were acyclic and sterile. Collectively, these data demonstrate that ACVR2A and ACVR2B are the critical type II receptors through which activins or related TGF-β ligands induce FSH production in mice in vivo.


2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S97-S97
Author(s):  
S Sharma ◽  
A Alimohammadi ◽  
S Chausheva ◽  
J Altmann ◽  
A Panzenboeck ◽  
...  

Oncogene ◽  
2004 ◽  
Vol 23 (46) ◽  
pp. 7651-7659 ◽  
Author(s):  
Isaac Yi Kim ◽  
Dong-Hyeon Lee ◽  
Dug Keun Lee ◽  
Han-Jong Ahn ◽  
Moses M Kim ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Xiangzhen Sui ◽  
Dan Li ◽  
Nadia Hedhli ◽  
Hongyu Qiu ◽  
Vinciane Gaussin ◽  
...  

The bone morphogenetic protein (BMP) pathway is a major signaling mechanism during cardiac development but it has no clear function in the post-natal heart. Here, we tested the hypothesis that BMP mediates the physiological effect of the cardiac chaperone H11Kinase/Hsp22 (H11K). Expression of H11K increases during both cardiac ischemia and overload, and its cardiac-specific over-expression in a transgenic (TG) mouse is sufficient to provide major protection against ischemia and to promote cardiac cell growth, which involves the activation of phosphatidylinositol-3-kinase (PI3K) and of its effector Akt. We tested whether H11K-induced activation of PI3K is mediated by BMP. Microarray comparison between hearts from TG and wild type (WT) mice showed an up-regulation of the BMP receptor subunits Alk3 and BMPR-II, as well as of the BMP receptor ligand BMP4, which was confirmed at the protein level (P<0.01 vs WT). Activation of the BMP pathway in TG mice was confirmed by increased phosphorylation of the canonical BMP effectors Smad 1/5/8 (P<0.01 vs WT). The mechanism was further studied in isolated cardiac myocytes. Adeno-mediated over-expression of H11K was accompanied by significant 2–3-fold increase in PI3K activity, phospho-Akt, Smad 1/5/8 phosphorylation and cell growth as measured by [3H]phenylalanine incorporation, and by a 70% reduction in H2O2-mediated apoptosis (all values, P<0.01 vs control). All these changes mediated by H11K in myocytes were abolished upon addition of the BMP antagonist noggin. In pull-down experiments, H11K co-precipitated with both Alk3 and BMPR-II, and increased the association of these two subunits into a functional receptor. Accordingly, Smad 1/5/8 phosphorylation in presence of BMP4 was enhanced by 5-fold upon H11K over-expression, whereas it was decreased by 3-fold upon H11K knockdown (both, P<0.01 vs control), which shows that H11K potentiates the BMP receptor signaling pathway. Therefore, potentiation of the BMP receptor pathway by H11K promotes the activation of the PI3K/Akt pathway and dictates the physiological effects of H11K on cardiac cell growth and survival, which shows a novel role for BMP signaling in post-natal heart. This research has received full or partial funding support from the American Heart Association, AHA National Center.


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 393-400 ◽  
Author(s):  
Loys Bodin ◽  
Elisa Di Pasquale ◽  
Stéphane Fabre ◽  
Martine Bontoux ◽  
Philippe Monget ◽  
...  

Genetic mutations with major effects on ovulation rate and litter size in sheep were recently identified in three genes belonging to the TGFβ superfamily pathway: the bone morphogenetic protein 15 (BMP15, also known as GDF9b), growth differentiation factor 9 (GDF9), and BMP receptor type IB (also known as activin-like kinase 6). Homozygous BMP15 or GDF9 mutations raise female sterility due to a failure of normal ovarian follicle development, whereas heterozygous animals for BMP15 or GDF9 as well as heterozygous and homozygous animals for BMP receptor type IB show increased ovulation rates. In the present work, a new naturally occurring mutation in the BMP15 gene in the high prolific Lacaune sheep breed is described. The identified variant is a C53Y missense nonconservative substitution leading to the aminoacidic change of a cysteine with a tyrosine in the mature peptide of the protein. As for other mutations found in the same gene, this is associated with an increased ovulation rate and sterility in heterozygous and homozygous animals, respectively. Further in vitro studies showed that the C53Y mutation was responsible for the impairment of the maturation process of the BMP15 protein, resulting in a defective secretion of both the precursor and mature peptide. Overall, our findings confirm the essential role of the BMP15 factor in the ovarian folliculogenesis and control of ovulation rate in sheep.


Sign in / Sign up

Export Citation Format

Share Document