scholarly journals Analysis of E2F transcription factor 7 (E2F7)-dependent and doxorubicin (DOXO)-regulated transcriptomes in human KJD-1/SV40 and SCC25 squamous cell carcinoma cells

Author(s):  
M Hazar-Rethinam
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ping Zhou ◽  
Lei Xiao ◽  
Xiaonan Xu

Abstract Background As a tumor-accelerating transcriptional factor, E2F transcription factor 7 (E2F7) was up-regulated in many forms of cancers. Nevertheless, little has been reported about the impacts of E2F7 on oral squamous cell carcinoma (OSCC). Here, we aimed to probe whether E2F7 had influences on OSCC and its potential mechanism. Methods The expression of E2F7 in OSCC tissues was analyzed using the data acquired from TCGA and ONCOMINE databases. E2F7 prognostic value in OSCC patients was analyzed utilizing TCGA database. The expression of E2F7 in OSCC cell lines was detected by qRT-PCR. Gain-and loss-function of E2F7 assays in TCA-83 and CAL27 cells were performed respectively to inquire the function of E2F7. Western blotting was applied to test the alternations of EMT-related markers. Results In OSCC tissues, E2F7 was highly expressed. Besides, high expression of E2F7 predicted worse prognosis in OSCC patients. Moreover, E2F7 was over-expressed in TCA-83, HSC-4 and CAL27 (all OSCC cell lines) cells relative to that in HNOK (a normal cell line) cells. Gain-and loss-function assays displayed that deficiency of E2F7 suppresses CAL27 cell growth, migration, invasion and E2F7 high-expression resulted in inverse outcomes in TCA-83 cells. Finally, we found that silencing of E2F7 facilitated E-cadherin protein expression level and reduced N-cadherin, Vimentin and Snail protein levels in CAL27 cells, whilst E2F7 high-expression exhibited the opposite effects in TCA-83 cells. Conclusions These outcomes indicated that E2F7 performs a carcinogenic role in OSCC, which provides a theoretical basis for the therapeutic strategies of OSCC.


2016 ◽  
Vol 14 (1) ◽  
pp. 337-342 ◽  
Author(s):  
XUE MEI LI ◽  
YONG JUN PIAO ◽  
KYUNG-CHEOL SOHN ◽  
JEONG-MIN HA ◽  
MYUNG IM ◽  
...  

2019 ◽  
Vol 17 (4) ◽  
pp. 463-469
Author(s):  
Hou Deqiang ◽  
Gao Yufeng ◽  
Bai Ning ◽  
Dong Yu

Isoliquiritigenin is a flavonoid commonly found in liquorice and has been identified as a potent anti-tumor agent. The aim of this study was to investigate whether isoliquiritigenin regulates the proliferation and apoptosis of tongue squamous cell carcinoma cells by regulating forkhead box G1 expression via miR-21. MTT assay and flow cytometry were used to analyze cell proliferation and apoptosis, respectively. Quantitative real time polymerase chain reaction and western blotting were used to detect mRNA and protein expression levels, respectively. The relationship between miR-21 and forkhead box G1 was detected by dual luciferase assay. Isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells, and decreased miR-21 levels and promoted forkhead box G1 expression. Forkhead box G1 was then identified as a target of miR-21 and ISL could promote forkhead box G1 expression by inhibiting miR-21. Further analysis suggested that upregulation of miR-21 improved proliferation and suppressed apoptosis of tongue squamous cell carcinoma cells by inhibiting forkhead box G1 expression. Finally, our results revealed that isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells by regulating miR-21. Isoliquiritigenin might act as a novel therapeutic treatment for tongue squamous cell carcinoma cells through up-regulation of forkhead box G1 expression via inhibiting miR-21expression.


Sign in / Sign up

Export Citation Format

Share Document