Complete coverage path planning for an Arnold system based mobile robot to perform specific types of missions

2019 ◽  
Vol 20 (11) ◽  
pp. 1530-1542 ◽  
Author(s):  
Cai-hong Li ◽  
Chun Fang ◽  
Feng-ying Wang ◽  
Bin Xia ◽  
Yong Song
2013 ◽  
Vol 819 ◽  
pp. 379-383 ◽  
Author(s):  
San Peng Deng ◽  
Zhong Min Wang ◽  
Peng Zhou ◽  
Hong Bing Wu

This paper presents a complete coverage path planning method, which combines local space coverage with global motion planning. It is realized by modeling mobile robot environment based on Boustrophedon cell decomposition method; and according to the characteristics of regional environment model, the connectivity of the traversing space is represented by a complete weighted connected matrix. Then Genetic algorithm (GA) is used to optimize the subspace traversal distance to obtain the shortest global traversal sequence of mobile robot.


2012 ◽  
Vol 8 (10) ◽  
pp. 567959 ◽  
Author(s):  
Mingzhong Yan ◽  
Daqi Zhu ◽  
Simon X. Yang

A real-time map-building system is proposed for an autonomous underwater vehicle (AUV) to build a map of an unknown underwater environment. The system, using the AUV's onboard sensor information, includes a neurodynamics model proposed for complete coverage path planning and an evidence theoretic method proposed for map building. The complete coverage of the environment guarantees that the AUV can acquire adequate environment information. The evidence theory is used to handle the noise and uncertainty of the sensor data. The AUV dynamically plans its path with obstacle avoidance through the landscape of neural activity. Concurrently, real-time sensor data are “fused” into a two-dimensional (2D) occupancy grid map of the environment using evidence inference rule based on the Dempster-Shafer theory. Simulation results show a good quality of map-building capabilities and path-planning behaviors of the AUV.


2011 ◽  
Vol 467-469 ◽  
pp. 1377-1385 ◽  
Author(s):  
Ming Zhong Yan ◽  
Da Qi Zhu

Complete coverage path planning (CCPP) is an essential issue for Autonomous Underwater Vehicles’ (AUV) tasks, such as submarine search operations and complete coverage ocean explorations. A CCPP approach based on biologically inspired neural network is proposed for AUVs in the context of completely unknown environment. The AUV path is autonomously planned without any prior knowledge of the time-varying workspace, without explicitly optimizing any global cost functions, and without any learning procedures. The simulation studies show that the proposed approaches are capable of planning more reasonable collision-free complete coverage paths in unknown underwater environment.


Sign in / Sign up

Export Citation Format

Share Document