Complete coverage path planning for road cleaning robot

Author(s):  
Guoqing Hu ◽  
Zhengwei Hu ◽  
Hongbo Wang
Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1136 ◽  
Author(s):  
Anh Le ◽  
Ping-Cheng Ku ◽  
Thein Than Tun ◽  
Nguyen Huu Khanh Nhan ◽  
Yuyao Shi ◽  
...  

The efficiency of energy usage applied to robots that implement autonomous duties such as floor cleaning depends crucially on the adopted path planning strategies. Energy-aware for complete coverage path planning (CCPP) in the reconfigurable robots raises interesting research, since the ability to change the robot’s shape needs the dynamic estimate energy model. In this paper, a CCPP for a predefined workspace by a new floor cleaning platform (hTetro) which can self-reconfigure among seven tetromino shape by the cooperation of hinge-based four blocks with independent differential drive modules is proposed. To this end, the energy consumption is represented by travel distances which consider operations of differential drive modules of the hTetro kinematic designs to fulfill the transformation, orientation correction and translation actions during robot navigation processes from source waypoint to destination waypoint. The optimal trajectory connecting all pairs of waypoints on the workspace is modeled and solved by evolutionary algorithms of TSP such as Genetic Algorithm (GA) and Ant Optimization Colony (AC) which are among the well-known optimization approaches of TSP. The evaluations across several conventional complete coverage algorithms to prove that TSP-based proposed method is a practical energy-aware navigation sequencing strategy that can be implemented to our hTetro robot in different real-time workspaces. Moreover, The CCPP framework with its modulation in this paper allows the convenient implementation on other polynomial-based reconfigurable robots.


2012 ◽  
Vol 8 (10) ◽  
pp. 567959 ◽  
Author(s):  
Mingzhong Yan ◽  
Daqi Zhu ◽  
Simon X. Yang

A real-time map-building system is proposed for an autonomous underwater vehicle (AUV) to build a map of an unknown underwater environment. The system, using the AUV's onboard sensor information, includes a neurodynamics model proposed for complete coverage path planning and an evidence theoretic method proposed for map building. The complete coverage of the environment guarantees that the AUV can acquire adequate environment information. The evidence theory is used to handle the noise and uncertainty of the sensor data. The AUV dynamically plans its path with obstacle avoidance through the landscape of neural activity. Concurrently, real-time sensor data are “fused” into a two-dimensional (2D) occupancy grid map of the environment using evidence inference rule based on the Dempster-Shafer theory. Simulation results show a good quality of map-building capabilities and path-planning behaviors of the AUV.


2011 ◽  
Vol 467-469 ◽  
pp. 1377-1385 ◽  
Author(s):  
Ming Zhong Yan ◽  
Da Qi Zhu

Complete coverage path planning (CCPP) is an essential issue for Autonomous Underwater Vehicles’ (AUV) tasks, such as submarine search operations and complete coverage ocean explorations. A CCPP approach based on biologically inspired neural network is proposed for AUVs in the context of completely unknown environment. The AUV path is autonomously planned without any prior knowledge of the time-varying workspace, without explicitly optimizing any global cost functions, and without any learning procedures. The simulation studies show that the proposed approaches are capable of planning more reasonable collision-free complete coverage paths in unknown underwater environment.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2585 ◽  
Author(s):  
Anh Le ◽  
Veerajagadheswar Prabakaran ◽  
Vinu Sivanantham ◽  
Rajesh Mohan

Advancing an efficient coverage path planning in robots set up for application such as cleaning, painting and mining are becoming more crucial. Such drive in the coverage path planning field proposes numerous techniques over the past few decades. However, the proposed approaches were only applied and tested with a fixed morphological robot in which the coverage performance was significantly degraded in a complex environment. To this end, an A-star based zigzag global planner for a novel self-reconfigurable Tetris inspired cleaning robot (hTetro) presented in this paper. Unlike the traditional A-star algorithm, the presented approach can generate waypoints in order to cover the narrow spaces while assuming appropriate morphology of the hTtero robot with the objective of maximizing the coverage area. We validated the efficiency of the proposed planning approach in the Robot Operation System (ROS) Based simulated environment and tested with the hTetro robot in real-time under the controlled scenarios. Our experiments demonstrate the efficiency of the proposed coverage path planning approach resulting in superior area coverage performance in all considered experimental scenarios.


Sign in / Sign up

Export Citation Format

Share Document