An adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system

Author(s):  
Bo Zhao ◽  
Weijia Shi ◽  
Bingquan Wang ◽  
Jiubin Tan
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1941
Author(s):  
Yuan Fu ◽  
Shusen Li ◽  
Jiuqing Liu ◽  
Bo Zhao

The vibration isolation system is now indispensable to high-precision instruments and equipment, which can provide a low vibration environment to ensure performance. However, the disturbance with variable frequency poses a challenge to the vibration isolation system, resulting in precision reduction of dynamic modeling. This paper presents a velocity self-sensing method and experimental verification of a vibration isolation system. A self-sensing actuator is designed to isolate the vibration with varying frequencies according to the dynamic vibration absorber structure. The mechanical structure of the actuator is illustrated, and the dynamic model is derived. Then a self-sensing method is proposed to adjust the anti-resonance frequency of the system without velocity sensors, which can also reduce the complexity of the system and prevent the disturbance transmitting along the cables. The self-sensing controller is constructed to track the variable frequency of the disturbance. A prototype of the isolation system equipped with velocity sensors is developed for the experiment. The experiment results show that the closed-loop transmissibility is less than −5 dB in the whole frequency rand and is less than −40 dB around, adding anti-resonance frequency which can be adjusted from 0 Hz to initial anti-resonance frequency. The disturbance amplitude of the payload can be suppressed to 10%.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Kai Meng ◽  
Yi Sun ◽  
Huayan Pu ◽  
Jun Luo ◽  
Shujin Yuan ◽  
...  

In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.


Sign in / Sign up

Export Citation Format

Share Document