scholarly journals EVOLUTIONARY HISTORY OF THE ARCTIC GROUND SQUIRREL (SPERMOPHILUS PARRYII) IN NEARCTIC BERINGIA

2004 ◽  
Vol 85 (4) ◽  
pp. 601-610 ◽  
Author(s):  
Aren A. Eddingsaas ◽  
Brandy K. Jacobsen ◽  
Enrique P. Lessa ◽  
Joseph A. Cook
1984 ◽  
Vol 22 (3) ◽  
pp. 375-382 ◽  
Author(s):  
Kris A. Pirozynski ◽  
Adrian Carter ◽  
Richard G. Day

Fungi in dung of the Arctic ground squirrel (Spermophilus parryii) collected near Dominion Creek, Yukon Territory, Canada, have a radiocarbon age of 12,200 ± 100 yr B.P. Most of the fungal remains are assignable to modern taxa, and most of these are either widespread saprobes or nonspecific coprophiles. However, specimens identified as Chaetomium simile and Thecaphora deformans represent fungi that may be more characteristic of rodent dung than that of other animals, inviting consideration of dung fungi as a potential source of paleontological data.


2010 ◽  
Vol 42A (1) ◽  
pp. 39-51 ◽  
Author(s):  
Yuting Liu ◽  
Wenchao Hu ◽  
Haifang Wang ◽  
Minghua Lu ◽  
Chunxuan Shao ◽  
...  

MicroRNAs (miRNAs) are 19- to 25-nucleotide-long small and noncoding RNAs now well-known for their regulatory roles in gene expression through posttranscriptional and translational controls. Mammalian hibernation is a physiological process involving profound changes in set-points for food consumption, body mass and growth, body temperature, and metabolic rate in which miRNAs may play important regulatory roles. In an initial study, we analyzed miRNAs in the liver of an extreme hibernating species, the Arctic ground squirrel ( Spermophilus parryii ), using massively parallel Illumina sequencing technology. We identified >200 ground squirrel miRNAs, including 18 novel miRNAs specific to ground squirrel and mir-506 that is fast evolving in the ground squirrel lineage. Comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1–2 mo after hibernation had ended (nonhibernating), we identified differentially expressed miRNAs during hibernation, which are also compared with the results from two other miRNA profiling methods: Agilent miRNA microarray and real-time PCR. Among the most significant miRNAs, miR-320 and miR-378 were significantly underexpressed during both stages of hibernation compared with nonhibernating animals, whereas miR-486 and miR-451 were overexpressed in late torpor but returned in early arousal to the levels similar to those in nonhibernating animals. Analyses of their putative target genes suggest that these miRNAs could play an important role in suppressing tumor progression and cell growth during hibernation. High-throughput sequencing data and microarray data have been submitted to GEO database with accession: GSE19808 .


1974 ◽  
Vol 52 (10) ◽  
pp. 894-902 ◽  
Author(s):  
Hans W. Behrisch

Liver of the hibernating (H) Arctic ground squirrel (Citellus undulatus) contains a single species of pyruvate kinase (PyK) that is distinct from the single isoenzyme of pyK observed in the non-hibernating (NH) ground squirrel, which has been previously described (Behrisch &Johnson (1974) Can. J. Biochem. 52, 547–559). The H-PyK has a pI value of 5.7 and a molecular weight of 241 000 – 243 000. Affinity of the H-PyK for the substrates phosphoenolpyruvate (PEP) and ADP is not affected by changing temperature. It is argued that this stability of the apparent Km's for substrate over a wide temperature range permits the hibernator to take advantage of the Q10 effect in maintaining a low rate of the PyK reaction. Similarly, affinity of H-PyK for the allosteric activator fructose-1,6-phosphate (FDP) and the inhibitor ATP is also conspicuously independent of temperature, suggesting a fine stoichiometry in the relative concentrations of the regulatory ligands in control of H-PyK over a wide temperature range. Further, affinity of H-PyK for the inhibitor ATP is about three- to fourfold lower than that of the NH-PyK, a condition that would favor the maintenance of a high energy charge in the hibernating liver cell. ATP apparently inhibits PyK by causing a dissociation of the enzyme molecule into two "halves" of about 110 000 molecular weight each. This dissociation is offset and reversed by FDP. Removal of the ATP by dialysis does not of itself result in a reassociation of the PyK "halves"; FDP and/or the substrates are required for the two subunits of PyK to reassociate. As the apparent Ki of H-PyK for ATP is higher than that of NH-PyK, substantially higher concentrations of ATP are required to effect the dissociation of H-PyK. Similarly, elevated concentrations of FDP are required to offset the ATP-caused dissociation of the H-PyK.Hibernating Arctic ground squirrels that are preparing to emerge finally from the hibernating state already possess substantial activities of the NH-PyK isoenzyme. This suggests that the animal "anticipates" its transition from one metabolic state from another. On the basis of these data a formal mechanism is proposed for the regulation of liver PyK in the Arctic ground squirrel in both the non-hibernating and hibernating states.


PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94225 ◽  
Author(s):  
Lori K. Bogren ◽  
Jasmine M. Olson ◽  
JoAnna Carpluk ◽  
Jeanette M. Moore ◽  
Kelly L. Drew

1950 ◽  
Vol 31 (3) ◽  
pp. 304 ◽  
Author(s):  
Charles G. Wilber ◽  
X. J. Musacchia

2015 ◽  
Vol 42 (2) ◽  
pp. 176 ◽  
Author(s):  
Jeffery R. Werner ◽  
Charles J. Krebs ◽  
Scott A. Donker ◽  
Rudy Boonstra ◽  
Michael J. Sheriff

Context The arctic ground squirrel (Urocitellus parryii) comprised 17% of the biomass of herbivores in the Yukon boreal forest during the summer months from 1987 to 1996 and was responsible for 23% of the energy flow at the herbivore level. By 2000, ground squirrel populations in this region collapsed to nearly zero and have remained there. Aims We summarise the population monitoring (since 1975) and recent experimental work that has been done on this key herbivore in the Kluane area of the southern Yukon to test one mechanistic hypothesis as the possible explanation for this population collapse and subsequent lack of recovery: predation. Methods Ground squirrels are the preferred summer prey of bird and mammal predators when snowshoe hare (Lepus americanus) populations are declining. We used translocations into formerly occupied habitat and radiotelemetry to determine movements and causes of death from 2009 to 2014. We surveyed 158 sites between 2008 and 2013 to measure the disappearance of colonies in alpine and forest habitats over 25 000 km2. Key results Ground squirrels from 2000 to 2013 comprised a small fraction of the herbivore biomass in the boreal forest zone, down from 17% earlier. Most forest populations (~95%) are currently extinct, whereas just over half (65%) of low-elevation meadow populations are locally extinct. One hypothesis is that ground squirrels in the forest have been driven into a predator pit from which they cannot recover. They remain abundant in alpine tundra (93% occupancy rate) and around airport runways and human habitations (97% occupancy), but there is no apparent dispersal from alpine areas down into the boreal forest. Conclusion The predator pit hypothesis is a likely explanation for the initial collapse and sustained decline in population size from 2000 to 2013. Recent attenuation of the hare cycle and milder winter climate have allowed shrubs to expand throughout the forest, thereby reducing visibility and increasing predation risk. This conclusion will be tested in further research using reintroductions to formerly occupied sites. Implication If the loss of this herbivore from the boreal forest is not reversed, predator pressure on the other major herbivores of the montane forest zone is likely to change significantly.


Sign in / Sign up

Export Citation Format

Share Document