scholarly journals Dynamic Process Analysis and Hazard Prediction of Debris Flow in Eastern Qinghai-Tibet Plateau Area—A Case Study at Ridi Gully

2017 ◽  
Vol 49 (3) ◽  
pp. 373-390 ◽  
Author(s):  
Qiang Zou ◽  
Gordon G. D. Zhou ◽  
Shusong Li ◽  
Chaojun Ouyang ◽  
Jinbo Tang
2021 ◽  
Author(s):  
Zheng Wang ◽  
Ningsheng Chen ◽  
Guisheng Hu ◽  
Yong Zhang ◽  
Genxu Wang ◽  
...  

Abstract Mount Gonggais located in the east of the Qinghai–Tibet Plateau; many debris flows have occurred in small basins with a small glacier cover or snow cover in this area. The hydrometeorological conditions that caused debris flows in this region are complex, making forecasting and early warning difficult. Previous studies for these small-glacial-covered basins have primarily considered rainfall as the only inducing factor of debris flows, and often the effects of temperature are neglected. Thus, we carried out a probabilistic analysis of variables derived from hydrometeorological factors for the Mount Gongga region, Sichuan, China, where debris flows were recorded on 14 days between 1988 and 2019. By analyzing hydrological characteristics when debris flows occurred, three distinct dominant trigger types could be identified. The results show that 7 (50%) of the observed debris flow events during the study period, high-intensity rainfall was the dominant trigger, snowmelt by high temperature was identified as the dominant trigger for 2 (14%). Furthermore, 5 (36%) debris flow events could be attributed to the combined effects of long-lasting (or short-medium) rainfall and sustained higher temperatures. We find that the differences between the trigger types are statistically significant, and a susceptibility prediction differentiating between trigger types can outperform simple rainfall-only situations. This study contributes to an improved understanding of the hydrometeorological impact on debris flow initiation in high elevation watersheds.


Geomorphology ◽  
2021 ◽  
pp. 107592
Author(s):  
Tianjun Qi ◽  
Xingmin Meng ◽  
Feng Qing ◽  
Yan Zhao ◽  
Wei Shi ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 589 ◽  
Author(s):  
Xingchuan Gao ◽  
Tao Li ◽  
Xiaoshu Cao

The Qinghai-Tibet Plateau area (QTP) is the most unique environmental-population region and an important natural laboratory for the study of human-land relations. The poor transportation conditions have long restricted socio-economic development. The research on the transport infrastructure and spatial effect in the QTP is of significance to the sustainable development of the region. Accordingly, a spatial accessibility model was used to analyze the spatial pattern of accessibility in QTP from 1976–2016, examine the accessibility evolution trend on the township scale and reveal the spatial fairness and changes in accessibility. The main conclusions are as follows: (1) The accessibility to major cities improved and the time-space convergence effect was significant. (2) The spatial autocorrelation analysis results showed that the improvement in transport infrastructure had a significant impact on the agglomeration of the accessibility level. (3) Access time from towns to the nearest major city are much shorter. More Tibetan people have more opportunities to access cities. (4) The accessibility coefficient and relative accessibility revealed distributive effects and spatial fairness of accessibility. (5) The global coefficient of variation value demonstrated an increasing trend, which indicates that spatial unfairness of transport is increasing.


Sign in / Sign up

Export Citation Format

Share Document