scholarly journals GIS-based Tests for Quality Control of Meteorological Data and Spatial Interpolation of Climate Data

2009 ◽  
Vol 29 (4) ◽  
pp. 339-349 ◽  
Author(s):  
Ching-An Chiu ◽  
Po-Hsiung Lin ◽  
King-Cherng Lu
2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Mohammadreza Mohammadi ◽  
John Finnan ◽  
Chris Baker ◽  
Mark Sterling

This paper examines the impact that climate change may have on the lodging of oats in the Republic of Ireland and the UK. Through the consideration of a novel lodging model representing the motion of an oat plant due to the interaction of wind and rain and integrating future predictions of wind and rainfall due to climate change, appropriate conclusions have been made. In order to provide meteorological data for the lodging model, wind and rainfall inputs are analysed using 30 years’ time series corresponding to peak lodging months (June and July) from 38 meteorological stations in the United Kingdom and the Irish Republic, which enables the relevant probability density functions (PDFs) to be established. Moreover, climate data for the next six decades in the British Isles produced by UK climate change projections (UKCP18) are analysed, and future wind and rainfall PDFs are obtained. It is observed that the predicted changes likely to occur during the key growing period (June to July) in the next 30 years are in keeping with variations, which can occur due to different husbandry treatments/plant varieties. In addition, the utility of a double exponential function for representing the rainfall probability has been observed with appropriate values for the constants given.


2015 ◽  
Vol 61 (230) ◽  
pp. 1037-1047 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractVariations in accumulation rate As(t) and temperature Ts(t) at the surface of firn cause changes in the rate of firn compaction (FC) and surface height H(t) that do not involve changes in mass, and therefore need to be accounted for in deriving mass changes from measured H(t). As the effects of changes in As(t) and Ts(t) propagate into the firn, the FC rate is affected with a highly variable and complex response time. The H(t) during measurement periods depend on the history of As(t) and Ts(t) prior to the measurements. Consequently, knowledge of firn response times to climate perturbations is important to estimate the required length of the time series of As(t) and Ts(t) used in FC models. We use our numerical FC model, which is time-dependent on both temperature and accumulation rate, to examine the response times of both H(t) and the rates of change dH(t)/dt to variations in As(t) and Ts(t) using sample perturbations and climate data for selected sites in Antarctica. Our results show that the response times for dH(t)/dt, which are of particular interest, are much shorter than the responses of H(t). Typical response times of dH(t)/dt are from several years to <20 years. The response times are faster in warmer and higher-accumulation areas such as Byrd Station, West Antarctica (4 years), and slower in colder and lower-accumulation areas such as Vostok, East Antarctica (18 years). The response times to temperature are much faster (0.9 year at Byrd and 2.2 years at Vostok), but the corresponding height changes persist much longer. The associated variations in firn density are significantly preserved in the density–depth profiles. For typical fluctuations of surface weather, the Ts(t) from satellite observations since 1982 and As(t) from meteorological data since 1979 are essentially of sufficient length to correct for FC height changes for measurements beginning in 1992.


2005 ◽  
Vol 25 (10) ◽  
pp. 1369-1379 ◽  
Author(s):  
Yan Hong ◽  
Henry A. Nix ◽  
Mike F. Hutchinson ◽  
Trevor H. Booth

2012 ◽  
Vol 47 (3-4) ◽  
pp. 389-405 ◽  
Author(s):  
N. R. Samal ◽  
D. C. Pierson ◽  
E. Schneiderman ◽  
Y. Huang ◽  
J. S. Read ◽  
...  

Global Circulation Model values of mean daily air temperature, wind speed and solar radiation for the 2081–2100 period are used to produce change factors that are applied to a 39 year record of local meteorological data to produce future climate scenarios. These climate scenarios are used to drive two separate, but coupled models: the Generalized Watershed Loading Functions-Variable Source Area model in order to simulate reservoir tributary inflows, and a one-dimensional reservoir hydrothermal model used to evaluate changes in reservoir thermal structure in response to changes in meteorological forcing and changes in simulated inflow. Comparisons between simulations based on present-day climate data (baseline conditions) and future simulations (change-factor adjusted baseline conditions) are used to evaluate the development and breakdown of thermal stratification, as well as a number of metrics that describe reservoir thermal structure, stability and mixing. Both epilimnion and hypolimnion water temperatures are projected to increase. Indices of mixing and stability show changes that are consistent with the simulated changes in reservoir thermal structure. Simulations suggest that stratification will begin earlier and the reservoir will exhibit longer and more stable periods of thermal stratification under future climate conditions.


Sign in / Sign up

Export Citation Format

Share Document