baseline conditions
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 26)

H-INDEX

32
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Detlev Boison ◽  
Susan A. Masino ◽  
Farah D. Lubin ◽  
Kai Guo ◽  
Theresa Lusardi ◽  
...  

AbstractEpigenetic modifications are crucial for normal development and implicated in disease pathogenesis. While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues related to data reproducibility across laboratories remain. Separating meaningful experimental changes from background variability is a challenge in epigenomic studies. Here we show that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. We examined genome-wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats housed in three independent laboratories using nearly identical conditions. Reduced-representation bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 1075 differentially expressed genes between laboratories, even in the absence of experimental intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue extraction procedures produced quantifiable variations between wild-type animals across the three laboratories. Our study demonstrates that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. This is particularly meaningful for neurological studies in animal models, in which baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, we conclude that strict adherence to protocols is necessary for the execution and interpretation of epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may confound experimental results.


Author(s):  
Viatcheslav Nesterov ◽  
Marko Bertog ◽  
Christoph Korbmacher

The renal outer medullary K+ channel (ROMK) is co-localized with the epithelial Na+ channel (ENaC) in late distal convoluted tubule (DCT2), connecting tubule (CNT) and cortical collecting duct (CCD). ENaC-mediated Na+ absorption generates the electrical driving force for ROMK-mediated tubular K+ secretion which is critically important for maintaining renal K+ homeostasis. ENaC activity is aldosterone-dependent in late CNT and early CCD (CNT/CCD) but aldosterone-independent in DCT2 and early CNT (DCT2/CNT). This suggests that under baseline conditions with low plasma aldosterone ROMK-mediated K+ secretion mainly occurs in DCT2/CNT. Therefore, we hypothesized that baseline ROMK activity is higher in DCT2/CNT than in CNT/CCD. To test this hypothesis, patch-clamp experiments were performed in DCT2/CNT and CNT/CCD microdissected from mice maintained on standard diet. In single-channel recordings from outside-out patches we detected typical ROMK channel activity in both DCT2/CNT and CNT/CCD and confirmed that ROMK is the predominant K+ channel in the apical membrane. Amiloride-sensitive (ΔIami) and tertiapin-sensitive (ΔITPNQ) whole-cell currents were determined to assess ENaC and ROMK activity, respectively. As expected, baseline ΔIami was high in DCT2/CNT (~370 pA) but low in CNT/CCD (~60 pA). Importantly, ΔITPNQ was significantly higher in DCT2/CNT than in CNT/CCD (~810 pA versus ~350 pA). We conclude that high ROMK activity in DCT2/CNT is critical for aldosterone-independent renal K+ secretion under baseline conditions. A low potassium diet significantly reduced ENaC but not ROMK activity in DCT2/CNT. This suggests that modifying ENaC activity in DCT2/CNT plays a key regulatory role in adjusting renal K+ excretion to dietary K+ intake.


Ecosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Stefanie A. Kroll ◽  
Hayley C. Oakland ◽  
Alison Minerovic Frohn
Keyword(s):  

Author(s):  
Eky Novianarenti ◽  
Ary Bachtiar Khrisna Putra ◽  
Setyo Nugroho ◽  
Arrad Ghani Safitra ◽  
Rini Indarti ◽  
...  

A numerical study to reduce the condenser pressure in critical areas of a power plant surface condenser has been carried out. Numerically, effects are considered through a three-dimensional simulation approach. Modifying by adding a guide plate with a three variation of angle, (?) 15?, 30?, 45? in the surface condenser area to reduce the dynamic forces and pressure due to the collision of fluid flow in the critical pipeline without reducing the purpose of the design of shell and tube heat exchanger results in transferring heat. The drag force caused by the interaction of the shear layer with the surface of the body is very undesirable, so that the control of the flow fields is needed, one of which is by optimal angle guide plate of the pipe arrangement in the critical area. This study aims to determine the optimal plate angle to overcome high pressure in the critical area. This research was numerically conducted using 3D CFD ANSYS 14.5 software with a turbulence model using a standard k-? using a pressure-based solution solver. The initial stage takes geometric data on the surface condenser in the design specification as the basis for making the domain and data from before as boundary conditions in the simulation research process. The result is that with the addition of guide plates, the average drag coefficient (Cd) is reduced compared to the average Cd in the baseline conditions and angle variation (?) 15?, 30?, 45? is 0.537; 0.644; 0.446; 0.464. Taking into this aspect, the most optimal plate angle is 30?. The simulation results show that changing the angle of the plate can reduce the Nusselt value than the baseline conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. E. Rivera ◽  
S. W. Davies

AbstractSymbiosis with unicellular algae in the family Symbiodiniaceae is common across tropical marine invertebrates. Reef-building corals offer a clear example of cellular dysfunction leading to a dysbiosis that disrupts entire ecosystems in a process termed coral bleaching. Due to their obligate symbiotic relationship, understanding the molecular underpinnings that sustain this symbiosis in tropical reef-building corals is challenging, as any aposymbiotic state is inherently coupled with severe physiological stress. Here, we leverage the subtropical, facultatively symbiotic and calcifying coral Oculina arbuscula to investigate gene expression differences between aposymbiotic and symbiotic branches within the same colonies under baseline conditions. We further compare gene ontology (GO) and KOG enrichment in gene expression patterns from O. arbuscula with prior work in the sea anemone Exaiptasia pallida (Aiptasia) and the salamander Ambystoma maculatum—both of which exhibit endophotosymbiosis with unicellular algae. We identify nitrogen cycling, cell cycle control, and immune responses as key pathways involved in the maintenance of symbiosis under baseline conditions. Understanding the mechanisms that sustain a healthy symbiosis between corals and Symbiodiniaceae algae is of urgent importance given the vulnerability of these partnerships to changing environmental conditions and their role in the continued functioning of critical and highly diverse marine ecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sofie De Moudt ◽  
Arthur Leloup ◽  
Paul Fransen

Aim: Cyclic stretch of vascular tissue at any given pressure reveals greater dimensions during unloading than during loading, which determines the cardiac beat-by-beat hysteresis loop on the pressure-diameter/volume relationship. The present study did not focus on hysteresis during a single stretch cycle but investigated whether aortic stiffness determined during continuous stretch at different pressures also displayed hysteresis phenomena.Methods: Aortic segments from C57Bl6 mice were mounted in the Rodent Oscillatory Set-up for Arterial Compliance (ROTSAC), where they were subjected to high frequency (10 Hz) cyclic stretch at alternating loads equivalent to a constant theoretical pulse pressure of 40 mm Hg. Diastolic and systolic diameter, compliance, and the Peterson elastic modulus (Ep), as a measure of aortic stiffness, was determined starting at cyclic stretch between alternating loads corresponding to 40 and 80 mm Hg, at each gradual load increase equivalent to 20 mm Hg, up to loads equivalent to pressures of 220 and 260 mm Hg (loading direction) and then repeated in the downward direction (unloading direction). This was performed in baseline conditions and following contraction by α1 adrenergic stimulation with phenylephrine or by depolarization with high extracellular K+ in aortas of young (5 months), aged (26 months) mice, and in segments treated with elastase.Results: In baseline conditions, diastolic/systolic diameters and compliance for a pulse pressure of 40 mm Hg were larger at any given pressure upon unloading (decreasing pressure) than loading (increasing pressure) of the aortic segments. The pressure-aortic stiffness (Ep) relationship was similar in the loading and unloading directions, and aortic hysteresis was absent. On the other hand, hysteresis was evident after activation of the VSMCs with the α1 adrenergic agonist phenylephrine and with depolarization by high extracellular K+, especially after inhibition of basal NO release with L-NAME. Aortic stiffness was significantly smaller in the unloading than in the loading direction. In comparison with young mice, old-mouse aortic segments also displayed contraction-dependent aortic hysteresis, but hysteresis was shifted to a lower pressure range. Elastase-treated segments showed higher stiffness upon unloading over nearly the whole pressure range.Conclusions: Mouse aortic segments display pressure- and contraction-dependent diameter, compliance, and stiffness hysteresis phenomena, which are modulated by age and VSMC-extracellular matrix interactions. This may have implications for aortic biomechanics in pathophysiological conditions and aging.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3356
Author(s):  
Larisa Ryskalin ◽  
Francesca Biagioni ◽  
Carla L. Busceti ◽  
Maico Polzella ◽  
Paola Lenzi ◽  
...  

Lactoferrin (LF) was used at first as a vehicle to deliver non-soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)-induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST-1. Western blot and immuno-fluorescence were used to assess the expression of the neurofilament marker βIII-tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno-fluorescence and electron microscopy. LF counteracts METH-induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy-related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration.


2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Fiona Limanaqi ◽  
Francesca Biagioni ◽  
Alessandra Salvetti ◽  
Stefano Puglisi-Allegra ◽  
Paola Lenzi ◽  
...  

The interplay between autophagy (ATG) and ubiquitin proteasome (UP) cell-clearing systems was recently evidenced at biochemical and morphological levels, where subunits belonging to both pathways co-localize within a novel organelle named autophagoproteasome (APP). We previously documented that APP occurs at baseline conditions, while it is hindered by neurotoxicant administration. This is bound to the activity of the mechanistic target of rapamycin (mTOR), since APP is stimulated by mTOR inhibition, which in turn, is correlated with cell protection. In this brief report, we provide novel, morphological and biochemical evidence on APP, suggesting the presence of active UP subunits within ATG vacuoles. Although a stream of interpretation considers such a merging as a catabolic pathway to clear inactive UP subunits, our data further indicate that UP-ATG merging may rather provide an empowered catalytic organelle.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 608
Author(s):  
Leda Mygind ◽  
Marianne Skov-Skov Bergh ◽  
Vivien Tejsi ◽  
Ramanan Vaitheeswaran ◽  
Kate L. Lambertsen ◽  
...  

Increasing evidence demonstrates that inflammatory cytokines—such as tumor necrosis factor (TNF)—are produced at low levels in the brain under physiological conditions and may be crucial for synaptic plasticity, neurogenesis, learning and memory. Here, we examined the effects of developmental TNF deletion on spatial learning and memory using 11–13-month-old TNF knockout (KO) and C57BL6/J wild-type (WT) mice. The animals were tested in the Barnes maze (BM) arena under baseline conditions and 48 h following an injection of the endotoxin lipopolysaccharide (LPS), which was administered at a dose of 0.5 mg/kg. Vehicle-treated KO mice were impaired compared to WT mice during the acquisition and memory-probing phases of the BM test. No behavioral differences were observed between WT and TNF-KO mice after LPS treatment. Moreover, there were no differences in the hippocampal content of glutamate and noradrenaline between groups. The effects of TNF deletion on spatial learning and memory were observed in male, but not female mice, which were not different compared to WT mice under baseline conditions. These results indicate that TNF is required for spatial learning and memory in male mice under physiological, non-inflammatory conditions, however not following the administration of LPS. Inflammatory signalling can thereby modulate spatial cognition in male subjects, highlighting the importance of sex- and probably age-stratified analysis when examining the role of TNF in the brain.


Sign in / Sign up

Export Citation Format

Share Document