scholarly journals Fine Scale Habitat Selection in Travancore Tortoises (Indotestudo travancorica) in the Anamalai Hills, Western Ghats

2016 ◽  
Vol 50 (2) ◽  
pp. 278-283 ◽  
Author(s):  
V. Deepak ◽  
Barry R. Noon ◽  
Karthikeyan Vasudevan

Ecoscience ◽  
2010 ◽  
Vol 17 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Guillaume Godbout ◽  
Jean-Pierre Ouellet


Author(s):  
Ryan L. Fosness ◽  
Taylor J. Dudunake ◽  
Richard R. McDonald ◽  
Ryan S. Hardy ◽  
Shawn Young ◽  
...  


2019 ◽  
Vol 132 (2) ◽  
pp. 126-139 ◽  
Author(s):  
Tera L. Edkins ◽  
Christopher M. Somers ◽  
Mark C. Vanderwel ◽  
Miranda J. Sadar ◽  
Ray G. Poulin

Pituophis catenifer sayi (Bullsnake) is a sparsely studied subspecies of conservation concern in Canada. Basic ecological information is lacking for P. c. sayi, which reaches its northern range limit in western Canada. To address this gap, we used radio-telemetry to examine space use and habitat selection in three populations of Bullsnakes in disjunct river valley systems (Frenchman, Big Muddy, and South Saskatchewan River Valleys) across their Saskatchewan range. Bullsnakes in two valleys used up to three times more space, travelled 2.5-times farther from overwintering sites, and had lower home range overlap than the third population. Landscape-level habitat selection was flexible, with snakes in all populations using both natural and human-modified habitats most frequently. Fine-scale habitat selection was also similar among populations, with Bullsnakes selecting sites within 1 m of refuges, regardless of whether they were natural or anthropogenic. Based on these results, Bullsnakes are flexible in their broad scale habitat use, as long as they are provided with fine scale refuge sites. The distribution of key seasonal resources appears to ultimately determine space use and habitat selection by Bullsnakes, regardless of the geographic location of the population.



2017 ◽  
Vol 141 ◽  
pp. 224-236 ◽  
Author(s):  
Candice Michelot ◽  
David Pinaud ◽  
Matthieu Fortin ◽  
Philippe Maes ◽  
Benjamin Callard ◽  
...  


2019 ◽  
Vol 84 (1) ◽  
pp. 172-184 ◽  
Author(s):  
Shelley L. Spear ◽  
Cameron L. Aldridge ◽  
Gregory T. Wann ◽  
Clait E. Braun
Keyword(s):  


Bird Study ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Mattia Brambilla ◽  
Federico Capelli ◽  
Matteo Anderle ◽  
Alessandro Forti ◽  
Marica Bazzanella ◽  
...  


2020 ◽  
Author(s):  
Annalee M. Tutterow ◽  
Andrew S. Hoffman ◽  
John L. Buffington ◽  
Zachary T. Truelock ◽  
William E. Peterman

AbstractFood acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, which predators can achieve by targeting spaces with high prey availability. However, it is debated whether prey availability drives fine-scale habitat selection for predators.We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey.We evaluated the spatial concordance of radio-telemetered timber rattlesnake foraging locations and passive infrared game camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) in a mixed-use forest in southeastern Ohio from 2016–2019. We replicated a characteristic timber rattlesnake ambush position by focusing cameras over logs and modeled small mammal encounters across the landscape in relation to remotely-sensed forest and landscape structural features. To determine whether snakes selectively forage in areas with higher prey availability, we projected the estimated prey spatial relationships across the landscape and modeled their overlap of occurrence with observed timber rattlesnake foraging locations.We broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared to Peromyscus spp. We also combined predicted species encounter rates to encompass a body size gradient in potential prey. The spatial distribution of cumulative small mammal encounters (i.e. overall prey availability), rather than the distribution of any one species, was highly predictive of snake foraging.Timber rattlesnakes appear to select foraging locations where the probability of encountering prey is greatest. Our study provides evidence for fine-scale optimal foraging in a low-energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.





The Condor ◽  
2020 ◽  
Author(s):  
James R Wright ◽  
Luke L Powell ◽  
Stephen N Matthews ◽  
Christopher M Tonra

Abstract The Rusty Blackbird (Euphagus carolinus) is a widespread, uncommon migrant that has experienced heavy population declines over the last century. This species can spend over a quarter of their annual cycle on migration, so it is important to determine their habitat requirements during stopover events to inform effective conservation planning. We assessed their habitat selection at an important stopover site in northern Ohio during both fall and spring migration. Since stopover habitat selection is scale-dependent, we investigated both patch-scale (between patches) and fine-scale (within a patch) selection using radio telemetry to locate foraging and roosting flocks, and compared habitat variables between used and available points across the study site. At the patch scale, we found that birds preferred dogwood–willow swamp, low-lying forest patches, and areas of greater habitat complexity for foraging in both seasons. At the fine scale, spring migrants foraged closer to habitat edges than random, and preferred areas with more wet leaf litter and shallow water, and less grass cover. Fall migrants also preferred shallow water and leaf litter cover, and avoided areas with dense grass, forbs, and herbaceous shrub cover. By contrast, birds consistently roosted in dense stands of emergent Phragmites or Typha marsh, suggesting that the best stopover or staging sites are those with a matrix of different wetland habitats. Although the migratory range of Rusty Blackbirds is currently dominated by agricultural development, our results suggest that fragmented landscapes can still provide adequate habitat for migrants if the available land is managed for a variety of wet habitat types.



Sign in / Sign up

Export Citation Format

Share Document