patch selection
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 34)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
V. G. Loginova ◽  
Yu. N. Zakharov ◽  
A. N. Kazantsev ◽  
Yu. I. Shokin ◽  
E. V. Evtushenko ◽  
...  

Objective: to construct geometric models of carotid bifurcation and build a computer modeling for carotid endarterectomy (CEA) operations with patches of various configurations.Materials and methods. The method uses reconstructed models of a healthy blood vessel obtained from a preoperative computed tomography (CT) study of the affected blood vessel of a particular patient. Flow in the vessel is simulated by computational fluid dynamics using data from the patient's ultrasonic Doppler velocimetry and CT angiography. Risk factors are assessed by hemodynamic indices at the vessel wall associated with Wall Shear Stress (WSS).Results. We used the proposed method to study the hemodynamic results of 10 virtual CEA operations with patches of various shapes on a reconstructed healthy artery of a particular patient. The reason for patch implantation was to ensure that the vessel lumen is not narrowed as a result of the surgery, since closing the incision without a patch can reduce the vessel lumen circumference by 4–5 mm, which adversely affects blood flow. On the other hand, too wide a patch creates aneurysmorphic deformation of the internal carotid artery (ICA) mouth, which is not optimal due to formation of a large recirculation zone. In this case, it was found that the implanted patch width of about 3 mm provides an optimal hemodynamic outcome. Deviations from this median value, both upward and downward, impair hemodynamics. The absence of a patch gives the worst of the results considered.Conclusion: The proposed computer modeling technique is able to provide a personalized patch selection for classical CEA with low risk of restenosis in the long-term follow-up.


2021 ◽  
Author(s):  
Juliana A. Souza ◽  
Augusto A. V. Flores

Abstract Connectivity is paramount for population stability, but the mechanisms underlying the distribution of populated patches and how they affect reproductive connectivity and individual fitness remain elusive. Here, we mapped the distribution of sand dollars – as habitat patches for obligate-commensal pea crabs – at several sites. At occupied patches, we assessed whole-crab population structure and the fitness of ovigerous females. While sand-dollar supply did not limit the size of crab populations, overall crab abundance limited reproductive connectivity and the potential for offspring production. However, except for sites of extremely low and high connectivity, crab aggregations at sand-dollar clusters countervailed the overall random distribution of sand-dollar populations, greatly enhancing the reproductive potential of whole-crab populations. Crab interactions, likely controlled by larger females, added to reproductive connectivity by increasing the frequency of mating pairs in hosts. Differently from the population-level case, effects of crab abundance on individual fitness were dual and only detectable when abundance was lowest (positive) or highest (negative), so that fitness remained high at intermediate crab abundance, decreasing when it became either too low (e.g. Allee effects) or too high (e.g. energetic costs of intraspecific competition). This study indicates that connectivity may affect different levels of biological organization in specific ways.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4701
Author(s):  
Yunxia Liu ◽  
Zeyu Zou ◽  
Yang Yang ◽  
Ngai-Fong Bonnie Law ◽  
Anil Anthony Bharath

Source camera identification has long been a hot topic in the field of image forensics. Besides conventional feature engineering algorithms developed based on studying the traces left upon shooting, several deep-learning-based methods have also emerged recently. However, identification performance is susceptible to image content and is far from satisfactory for small image patches in real demanding applications. In this paper, an efficient patch-level source camera identification method is proposed based on a convolutional neural network. First, in order to obtain improved robustness with reduced training cost, representative patches are selected according to multiple criteria for enhanced diversity in training data. Second, a fine-grained multiscale deep residual prediction module is proposed to reduce the impact of scene content. Finally, a modified VGG network is proposed for source camera identification at brand, model, and instance levels. A more critical patch-level evaluation protocol is also proposed for fair performance comparison. Abundant experimental results show that the proposed method achieves better results as compared with the state-of-the-art algorithms.


2021 ◽  
Author(s):  
Jean-Baptiste Cordonnier ◽  
Aravindh Mahendran ◽  
Alexey Dosovitskiy ◽  
Dirk Weissenborn ◽  
Jakob Uszkoreit ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Neil S. Banas ◽  
Eva Friis Møller ◽  
Kristin L. Laidre ◽  
Malene Simon ◽  
Ingrid H. Ellingsen ◽  
...  

Bowhead whales (Balaena mysticetus) visit Disko Bay, West Greenland in winter and early spring to feed on Calanus spp., at a time of year when the copepods are still mostly in diapause and concentrated in near-bottom patches. Combining past observations of copepod abundance and distribution with detailed observations of bowhead whale foraging behaviour from telemetry suggests that if the whales target the highest-density patches, they likely consume 26–75% of the Calanus standing stock annually. A parallel bioenergetic calculation further suggests that the whales' patch selection must be close to optimally efficient at finding hotspots of high density copepods near the sea floor in order for foraging in Disko Bay to be a net energetic gain. Annual Calanus consumption by bowhead whales is similar to median estimates of consumption by each of three zooplankton taxa (jellies, chaetognaths, and predatory copepods), and much greater than the median estimate of consumption by fish larvae, as derived from seasonal abundance and specific ingestion rates from the literature. The copepods' self-concentration during diapause, far from providing a refuge from predation, is the behaviour that makes this strong trophic link possible. Because the grazing impact of the whales comes 6–10 months later than the annual peak in primary production, and because Disko Bay sits at the end of rapid advective pathways (here delineated by a simple numerical particle-tracking experiment), it is likely that these Calanus populations act in part as a long-distance energetic bridge between the whales and primary production hundreds or thousands of km away.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabiana P. Fragoso ◽  
Qi Jiang ◽  
Murray K. Clayton ◽  
Johanne Brunet

AbstractPollen and nectar resources are unevenly distributed over space and bees must make routing decisions when navigating patchy resources. Determining the patch selection process used by bees is crucial to understanding bee foraging over discontinuous landscapes. To elucidate this process, we developed four distinct probability models of bee movement where the size and the distance to the patch determined the attractiveness of a patch. A field experiment with a center patch and four peripheral patches of two distinct sizes and distances from the center was set up in two configurations. Empirical transition probabilities from the center to each peripheral patch were obtained at two sites and two years. The best model was identified by comparing observed and predicted transition probabilities, where predicted values were obtained by incorporating the spatial dimensions of the field experiment into each model’s mathematical expression. Bumble bees used both patch size and isolation distance when selecting a patch and could assess the total amount of resources available in a patch. Bumble bees prefer large, nearby patches. This information will facilitate the development of a predictive framework to the study of bee movement and of models that predict the movement of genetically engineered pollen in bee-pollinated crops.


Image inpainting is the process of reconstruction of the damaged image and removal of unwanted objects in an image. In the image inpainting process patch priority andselection of best patch playsa major role. The patch size is also considered for producing good results in the image inpainting. In this paper patch priority is obtained by introducing a regularization factor (ɷ). The best patch selection is acquired by using the Sum of Absolute Difference (SAD) distance method. The results of inpainting are investigated with adjustable patch sizes of 5×5, 7×7, 9×9, 11×11, and 13×13 for the proposed method. The performance of these adjustable patch sizes is observed by using Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). The best suitable patch size for good inpainting is announced based on the values of PSNR and MSE.


Sign in / Sign up

Export Citation Format

Share Document