Life-History Responses to Pathogens in Tiger Salamander (Ambystoma tigrinum) Larvae

2005 ◽  
Vol 39 (3) ◽  
pp. 366-372 ◽  
Author(s):  
Matthew J. Parris ◽  
Andrew Storfer ◽  
James P. Collins ◽  
Elizabeth W. Davidson
Ecology ◽  
2014 ◽  
Vol 95 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Christopher A. Searcy ◽  
Levi N. Gray ◽  
Peter C. Trenham ◽  
H. Bradley Shaffer

2021 ◽  
Vol 118 (17) ◽  
pp. e2014719118
Author(s):  
Kathryn M. Everson ◽  
Levi N. Gray ◽  
Angela G. Jones ◽  
Nicolette M. Lawrence ◽  
Mary E. Foley ◽  
...  

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245047
Author(s):  
Amanda B. Gillis ◽  
Emmet L. Guy ◽  
Andrew J. Kouba ◽  
Peter J. Allen ◽  
Ruth M. Marcec-Greaves ◽  
...  

The aims of this project were to characterize tiger salamander (Ambystoma tigrinum) spermatozoa motility over time, when excreted as either milt or spermic urine prior to packaging into a spermatophore, and to determine the effect of temperature on sperm motility. A split-plot design was utilized to assess the motility of the two pre-spermatophore sample types at two temperatures, 0°C and 20°C (n = 10 for each treatment). Spermiation was induced through exogenous hormone treatment of luteinizing hormone releasing hormone analog in order to collect both milt and spermic urine, which were evaluated for motility, divided into two separate aliquots, and subsequently stored in either an ice-bath (0°C) or on the benchtop (20°C). The decay rate of sperm motility was assessed by reevaluating subsamples at 0.5, 1, 2, 3, 5, 7, and 24 hours following the initial assessment. Results showed that sperm stored at 0°C had significantly higher progressive, non-progressive, and total motility for both sperm collection types over time. An interaction was found between collection type and time, with milt exhibiting lower initial motility that was more sustainable over time, compared to spermic urine. For both milt and spermic urine, motility decreased rapidly with storage duration, indicating samples should be used as soon as possible to maximize motility for in-vitro fertilization and cryopreservation. This is the first study to describe the differences in sperm motility between milt and spermic urine from an internally fertilizing caudate and demonstrates the benefits of near freezing temperatures on sperm longevity.


Genetica ◽  
2008 ◽  
Vol 136 (3) ◽  
pp. 501-504 ◽  
Author(s):  
Zafer Bulut ◽  
Cory R. McCormick ◽  
David Gopurenko ◽  
Rod N. Williams ◽  
David H. Bos ◽  
...  

1982 ◽  
Vol 73 (4) ◽  
pp. 250-253 ◽  
Author(s):  
Benjamin A. Pierce ◽  
Jeffry B. Mitton

Sign in / Sign up

Export Citation Format

Share Document