Assessing the Effect of Eastern Hemlock (Tsuga canadensis) Decline from Hemlock Woolly Adelgid (Adelges tsugae) Infestation on Ectomycorrhizal Colonization and Growth of Red Oak (Quercus rubra) Seedlings

2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Kathryn E. Caruso ◽  
Jonathan L. Horton ◽  
Alisa A. Hove
2019 ◽  
Vol 117 (4) ◽  
pp. 340-350 ◽  
Author(s):  
Heath W Garris ◽  
Thomas H Settle ◽  
Jonathan E Crossman ◽  
Stephen J Grider ◽  
Shawnté L Michaels

Abstract The neonicotinoid systemic insecticide imidacloprid has proven to be an effective treatment for the prevention and control of hemlock woolly adelgid (Adelges tsugae Annand) in southeastern populations of eastern hemlock (Tsuga canadensis L.). Recent studies have demonstrated that imidacloprid and A. tsugae both stimulate salicylic acid-dependent physiological responses in plant tissues responsible for plant defenses against pathogens, timing of developmental outcomes including flowering and leaf senescence, and resilience to abiotic stressors. We evaluated the interacting effects of A. tsugae presence/absence and treatment with imidacloprid on leaf optical properties indicative of photosynthetic potential, photosynthetic efficiency, and tissue senescence. Our results indicated that A. tsugae changes lower canopy leaf optical properties indicative of reduced photosynthetic potential/efficiency and accelerated senescence in mature leaves. Imidacloprid was associated with declines in photosynthetic potential and showed a largely similar, though less pronounced, effect on leaf spectral properties to that of A. tsugae.


2013 ◽  
Vol 199 (2) ◽  
pp. 452-463 ◽  
Author(s):  
Jean-Christophe Domec ◽  
Laura N. Rivera ◽  
John S. King ◽  
Ilona Peszlen ◽  
Fred Hain ◽  
...  

2011 ◽  
Vol 41 (12) ◽  
pp. 2433-2439 ◽  
Author(s):  
Evan L. Preisser ◽  
Mailea R. Miller-Pierce ◽  
Jacqueline Vansant ◽  
David A. Orwig

The hemlock woolly adelgid (Adelges tsugae Annand) is an invasive hemipteran that poses a major threat to eastern hemlock (Tsuga canadensis (L.) Carrière) forests in the United States. We conducted three surveys over a five-year period that assessed the density of hemlock woolly adelgid (HWA) and a second invasive pest, the elongate hemlock scale (EHS; Fiorinia externa Ferris), overstory hemlock mortality, and hemlock regeneration in ~140 hemlock stands (mean size, 44 ha; range, 7–305 ha) within a 7500 km2 north–south transect of southern New England (USA). In each stand, we rated HWA and EHS density on 50 hemlock trees using a 0–3 scale (0, none; 1, 1–10 organisms/m branch; 2, 11–100 organisms/m branch; 3, >100 organisms/m branch). Data on the presence or absence of regeneration were taken in 2005; in 2007 and 2009, we quantitatively assessed regeneration by counting the number of hemlock seedlings in three 16 m2 plots per stand. In 2005, 81% of sampled stands had HWA, 72% had EHS, and 66% had hemlock regeneration. In 2007, 86% of sampled stands had HWA, 79% had EHS, and 46% had hemlock regeneration. In 2009, 91% of stands had HWA, 87% had EHS, and 37% had hemlock regeneration. The proportion of stands with hemlock regeneration declined 46% between 2005 and 2009, and hemlock seedling density declined 71% between 2007 and 2009. A best-fit model selection algorithm found that this decrease was inversely correlated with stand-level adelgid density. There was no correlation between the change in seedling density and stand-level density of the elongate hemlock scale. The apparent decline in regeneration suggests that the ecosystem-level changes currently occurring in southern New England may be difficult to reverse.


2017 ◽  
Vol 47 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Kathryn B. Piatek ◽  
Mary Ann Fajvan ◽  
Richard M. Turcotte

Stand thinning is being tested as a means to limit the impacts of the invasive hemlock woolly adelgid (HWA; Adelges tsugae Annand) on eastern hemlock (Tsuga canadensis (L.) Carriere). The efficacy of this strategy may be reduced if thinning increases hemlock foliar nutrients because HWA densities are correlated with foliar concentrations of N, P, K, Ca, and Mn. We determined foliar N, P, K, Ca, and Mn concentrations in 1-year-old and all other (older) needles prior to and for 4 years after thinning in northwestern Pennsylvania stands of eastern hemlock without HWA. Average foliar concentrations in 1-year-old needles were 1.30–1.80 g N·100 g−1, 1300–1700 mg P·kg−1, 4200–6300 mg K·kg−1, 2500–5200 mg Ca·kg−1, and 2393 μg Mn·g−1. N, P, and K decreased, Ca increased, and Mn first increased and then stabilized. Thinning by itself did not affect the tested foliar nutrients. The interaction between treatment and year was significant and evident in temporal trajectories of foliar N and K. However, the differences between thinned and unthinned plots within years averaged only 0.03 g N·100 g−1 and 340 mg K·kg−1. We concluded that even though thinning changed the temporal trajectories of foliar N and K, the nutritional shifts were minimal, brief, and unlikely to affect the efficacy of thinning in limiting the impacts of HWA.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Ian G. Kinahan ◽  
Gabrielle Grandstaff ◽  
Alana Russell ◽  
Chad M. Rigsby ◽  
Richard A. Casagrande ◽  
...  

We conducted over a decade of research into individual eastern hemlock (Tsuga canadensis; hemlock) trees that are potentially resistant to hemlock woolly adelgid (Adelges tsugae; HWA), an invasive xylem-feeding insect that is capable of rapidly killing even mature trees. Following clonal propagation of these individuals, in 2015 we planted size- and age-matched HWA-resistant and HWA-susceptible hemlocks in HWA-infested forest plots in seven states. In 2019, we re-surveyed the plots; 96% of HWA-resistant hemlocks survived compared to 48% of susceptible trees. The surviving HWA-resistant trees were also taller, produced more lateral growth, retained more foliage, and supported lower densities of the elongate hemlock scale Fiorinia externa, another invasive hemlock pest, than the surviving HWA-susceptible trees. Our results suggest that HWA management may benefit from additional research exploring the identification, characterization, and use of HWA-resistant eastern hemlocks in future reforestation efforts.


2007 ◽  
Vol 37 (10) ◽  
pp. 2031-2040 ◽  
Author(s):  
Michael J. Daley ◽  
Nathan G. Phillips ◽  
Cory Pettijohn ◽  
Julian L. Hadley

Eastern hemlock ( Tsuga canadensis (L.) Carr.) is a coniferous evergreen species found across the northeastern United States that is currently threatened by the exotic pest hemlock woolly adelgid (HWA; Adelges tsugae Annand). As HWA kills eastern hemlock trees, black birch ( Betula lenta L.) has been found to be a dominant replacement species in the region. Seasonal changes in water use by eastern hemlock and black birch were investigated utilizing whole-tree transpiration measurement techniques. Annual evapotranspiration in an eastern hemlock and deciduous stand was also estimated. During the peak growing season, daily rates of transpiration were 1.6 times greater in black birch. Cumulative transpiration in black birch exceeded hemlock transpiration by 77 mm from June until October. During the dormant season, evapotranspiration rates were higher in the hemlock stand; however, estimated annual evapotranspiration was 327 mm in eastern hemlock compared with 417 mm in the deciduous stand. Our results suggest that a transition from a hemlock-dominated to a black birch-dominated stand will alter the annual water balance with the greatest impact occurring during the peak growing season. Late in the growing season, flow may be unsustainable in streams that normally have light or moderate flow because ofincreased water use by black birch.


2016 ◽  
Vol 42 (5) ◽  
Author(s):  
Richard Harper ◽  
Paul Weston

Seven species of hemlock (Tsuga spp.)—four from North America and three from Asia—were evaluated in replicated plots in Katonah, New York, United States (USDA Plant Hardiness Zone 6b) as potential replacements for eastern hemlock (Tsuga canadensis), which is gradually being extirpated from landscapes in the eastern United States. by the invasive hemlock woolly adelgid (Adelges tsugae). Trends reported in an earlier study (Weston and Harper 2009) continued but were exaggerated after an additional three years of observation. For example, Chinese hemlock (T. chinensis) continued to show the greatest potential as a replacement for T. canadensis as mortality was very low, overall plant health was exceptional, and tolerance to A. tsugae was robust. Early indicators suggest that T. chinensis may also be readily propagated from hardwood cuttings under appropriate greenhouse conditions. These characteristics suggest that T. chinensis may indeed become a viable replacement for T. canadensis, and a valuable addition to landscapes in the eastern U.S.


2012 ◽  
Vol 38 (2) ◽  
pp. 41-49
Author(s):  
Joseph Doccola ◽  
William Hascher ◽  
John Aiken ◽  
Peter Wild

Due to the widespread establishment of hemlock woolly adelgid (Adelges tsugae Annand) (HWA) across the range of eastern hemlock (Tsuga canadensis Carriere), woodland trees may be infested for many years before treatment is made. Symptoms of prolonged infestation include extensive dieback and thinned canopies. Imidacloprid, a systemic neonicotinoid insecticide, is a useful and effective tool to manage HWA. In this study, mature, large diameter trees in poor condition were treated with imidacloprid. Trees were treated once by trunk and/or soil injection in Asheville, North Carolina, U.S. Following application, changes in tree growth, HWA density and imidacloprid residues were measured for three years. Trees treated with imidacloprid recovered, whereas the untreated trees continued to struggle. Trees injected with imidacloprid accumulated compound in the canopy, facilitating refoliation and the imidacloprid persisted for three years. This extended activity of trunk-injected imidacloprid was attributed in part to slow upward movement through the restrictive tracheid vascular system and to perennial needle retention. The imidacloprid soil injection was slower to act systemically, but has potential for longer-term activity. Researchers suggest the combination of tree and soil injection for immediate and long-term (4+ years) activity as an effective and economic strategy to protect high-value trees.


Sign in / Sign up

Export Citation Format

Share Document