abiotic stressors
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 130)

H-INDEX

20
(FIVE YEARS 7)

Author(s):  
Elia Carraro ◽  
Antonino Di Iorio

AbstractDrought is the main abiotic stress that negatively affects the crop yield. Due to the rapid climate change, actual plant defence mechanisms may be less effective against increased drought stress and other related or co-occurring abiotic stresses such as salt and high temperature. Thus, genetic engineering approaches may be an important tool for improving drought tolerance in crops. This mini-review focuses on the responses to drought stress of the woody crop species Olea europaea and Citrus sp., selecting in particular five main strategies adopted by plants in response to drought stress: aquaporin (AQPs) expression, antioxidant activity, ABA signalling, and trehalose and proline accumulation. Transgenic studies on both the herbaceous Arabidopsis and woody Populus plant models showed an improvement in drought resistance with increasing expression of these drought-inducible genes. Outcomes from the present study suggest the overexpression of the gene families associated with AQPs and ABA biosynthesis, mainly involved in regulating water transport and in preventing water loss, respectively, as candidate targets for improving drought resistance; antioxidants-, trehalose- and proline-related genes remain valid candidates for resistance to a wider spectrum of abiotic stressors, including drought. However, the contribution of an increased stiffness of the modulus elasticity of leaf parenchyma cell walls to the rapid recovery of leaf water potential, delaying by this way the stress onset, is not a secondary aspect of the transgenic optimization, in particular for Olea cultivars.


2022 ◽  
Vol 5 ◽  
Author(s):  
Mariam Coulibaly ◽  
Guillaume Bodjrenou ◽  
Félicien Akohoue ◽  
Eric Etchikinto Agoyi ◽  
Fustelle Michée Merinosy Francisco ◽  
...  

Kersting's groundnut [Macrotyloma geocarpum (Harms.) Maréchal and Baudet], Fabaceae, is an important source of protein and essential amino acids. As a grain legume species, it also contributes to improving soil fertility through symbiotic nitrogen fixation. However, the crop is characterized by a relatively low yield (≤500 kg/ha), and limited progress has been made so far, toward the development of high-yielding cultivars that can enhance and sustain its productivity. Recently, there was an increased interest in alleviating the burdens related to Kersting's groundnut (KG) cultivation through the development of improved varieties. Preliminary investigations assembled germplasms from various producing countries. In-depth ethnobotanical studies and insightful investigation on the reproductive biology of the species were undertaken alongside morphological, biochemical, and molecular characterizations. Those studies revealed a narrow genetic base for KG. In addition, the self-pollinating nature of its flowers prevents cross-hybridization and represents a major barrier limiting the broadening of the genetic basis. Therefore, the development of a research pipeline to address the bottlenecks specific to KG is a prerequisite for the successful expansion of the crop. In this paper, we offer an overview of the current state of research on KG and pinpoint the knowledge gaps; we defined and discussed the main steps of breeding for KG' cultivars development; this included (i) developing an integrated genebank, inclusive germplasm, and seed system management; (ii) assessing end-users preferences and possibility for industrial exploitation of the crop; (iii) identifying biotic and abiotic stressors and the genetic control of responsive traits to those factors; (iv) overcoming the cross-pollination challenges in KG to propel the development of hybrids; (v) developing new approaches to create variability and setting adequate cultivars and breeding approaches; (vi) karyotyping and draft genome analysis to accelerate cultivars development and increase genetic gains; and (vii) evaluating the adaptability and stability of cultivars across various ecological regions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jianming Wang ◽  
Mingxu Li ◽  
Li Xu ◽  
Congcong Liu ◽  
Pu Yan ◽  
...  

Multiple ecological processes simultaneously govern community assembly, but it remains unclear how abiotic stressors regulate the relative importance of these processes among different biogeographic regions. Therefore, we conducted a comprehensive study on the responses of community assembly to varying environmental gradients, using the mean, variance, skewness, and kurtosis of plant height (height), specific leaf area (SLA) and leaf dry matter content (LDMC) distributions on the Tibetan Plateau (TP) and the Mongolian Plateau (MP). Our results showed that the prevalence of trait convergence across all grasslands in both TP and MP seem to be the result of abiotic filtering or weaker competitive exclusion etc. These trait-convergence assembly processes decrease the functional dispersion but increase the evenness of the trait frequency distribution. The mean, variance, skewness, and kurtosis responses of grassland communities to abiotic stress varied between the TP and MP. On average, plant trait distribution was mainly driven by temperature on the TP, and low-temperature stress altered the community assembly rules. In contrast, water availability shaped plant trait frequency distributions on the MP, and drought stress mediated the balance between different assembly processes. Our results provide empirical evidence that divergent abiotic stressors regulate the grassland community assembly on the TP and MP. Together, our study speculates that different aspects of future climate change, such as climate warming and changing precipitation patterns, on community assembly are dependent on regional climatic regimes.


2021 ◽  
Vol 182 (4) ◽  
pp. 9-17
Author(s):  
O. P. Kibalnik ◽  
T. V. Larina ◽  
O. B. Kameneva ◽  
D. S. Semin

Background. Global climate changes have recently led to a more frequent occurrence of adverse factors and a decrease in the productivity of major crops. Sorghum is a highly drought-resistant crop that can tolerate long-term soil and air droughts with much lower harvest losses than wheat or barley. It is important to understand physiological mechanisms affecting drought tolerance when breeding efforts are aimed at improving the adaptability to abiotic conditions and productivity of sorghum hybrids.Materials and methods. Twenty sterile lines of grain sorghum with 8 types of CMS were studied in 2019 and 2020 in the arid conditions of Saratov Province. Indicators of the leaf water regime were assessed according to VIR’s guidelines. Statistical processing of the research results was performed using the AGROS 2.09 software.Results. The indicators of the leaf water regime that reflected differentiated responses of the CMS-line plants to the prevailing water and temperature stressors during the critical flowering period for sorghum were analyzed. Four CMS lines were identified according to the chosen set of indicators: they manifested 71.13–72.02% of total water content, 5.26–9.08% of water deficit, and 57.40–83.17% of water retention capacity on average for the two years of research. For the first time, the effect of CMS in sorghum on the manifestation of water regime indicators was registered. In isonuclear CMS lines, the greatest effect on drought resistance was shown by cytoplasm A3 versus A4 (with the Zheltozernoe 10 genome), cytoplasm A5 versus A1 (with the Karlik 4v genome), and M35-1A versus the analog on cytoplasm 9E (with the Pischevoe 614 genome).Conclusion. It is shown that genetically different types of sterility can be used in breeding practice to increase the resistance to abiotic stressors in components of F1 crosses and hybrids.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12110
Author(s):  
Ana B. Menéndez ◽  
Oscar Adolfo Ruiz

Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2407
Author(s):  
Fabio Valentinuzzi ◽  
Youry Pii ◽  
Luigimaria Borruso ◽  
Tanja Mimmo ◽  
Edoardo Puglisi ◽  
...  

Despite being not essential to plants, Silicon (Si) has proven to have promoting effects on plants growth, yield, and resistance against biotic and abiotic stressors. The increase of concentration in specific minerals in plant tissues can also improve shelf-life, which, in fruits like strawberries, is also affected by the epiphytic microbial community. The present research was carried out to assess whether Si biofortification of strawberry plants, grown in soilless system, could affect plants yield and post-harvest feature of fruits during the storage period, carried out at three different temperatures (i.e., 1, 4 and 10 °C) for 7 and 14 days. Furthermore, we investigated whether the plant nutritional regime, specifically the Si fertilization, can impact the composition of microbial community. Our results showed that biofortification did not significantly affect fruits firmness, whereas, at the highest Si levels, an increase in titratable acidity was observed. The microbial community analysis highlighted for the first time the presence of probiotic bacteria, as Bacillus breve, which could present interesting technological features as strains adapted to the strawberry fruit-sphere. In addition, with the increasing levels of Si biofortification, the depletion of potentially pathogenic microorganisms, like Escherichia coli and Terrisporobacter glycolicus, was also observed. In conclusion, data here reported highlight for the first time the possible role played by the nutritional regimes of strawberry plants in shaping composition of the fruit epiphytic microbial community.


2021 ◽  
Vol 4 (4) ◽  
pp. 84
Author(s):  
Cesar Flores-Herrera ◽  
Emilia R. Gutiérrez-Mireles ◽  
Manuel Gutiérrez-Aguilar

Plant leaves present an intricate array of layers providing a robust barrier against pathogens and abiotic stressors. However, these layers may also constitute an obstacle for the assessment of intracellular processes, especially when using fluorescence microscopy approaches. Current methods for leaf mitochondrial membrane potential determinations have been traditionally performed in thin mesophyll sections, in isolated protoplasts or in fluorescent protein-expressing transgenic plants. This may limit the amount of information obtained about overall mitochondrial morphology in intact leaves. Here, we detail a fast and straightforward protocol to assess changes in leaf mitochondrial membrane potential associated with mitochondrial dysfunction in the model plant Arabidopsis thaliana. This protocol also permits mitochondrial shape, dynamics and polarity assessment in leaves subjected to diverse stress conditions.


2021 ◽  
Author(s):  
◽  
Gagandeep Jain

<p>Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots.  In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO₂ assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs. Contrary to this, the green morphs, although possessing the ability to synthesise betalains in flower petals, did not produce betalains in vegetative shoots in response to salt stress. Moreover, green morphs, in terms of leaf photosynthesis, performed poorly under salinity stress.  In chapter three I further investigated the physiological benefit of betacyanin accumulation in D. australe. I postulated that betacyanin in the leaves of D. australe can protect the salt stressed chloroplasts from harmful excessive light by absorbing significant amount of radiation. To test this, a novel experimental approach was used; the key biosynthetic step for betacyanin synthesis was identified, which was deficient in vegetative shoots of the green morphs. By supplying the product of this enzymatic reaction, L-DOPA, betacyanin synthesis could be induced in the leaves of green morphs. This model system was used to compare the photoprotective responses of red vs. green leaves. The L-DOPA induced betacyanic leaves showed similar responses (such as smaller reductions and faster recoveries of PSII and less H₂O₂ production than in the green leaves) to naturally betacyanic leaves when exposed to high light and salinity. The differences in photoinhibition between red and green leaves were attributed to the light absorbing properties of betacyanins. L-DOPA treated and naturally red leaves showed lower photoinactivation than green leaves when exposed to white or green light, although not when exposed to monochromatic (red) light.  In chapter four, I used a similar experimental model to that in the third chapter and showed that other than photoprotection, betacyanins in leaves may be involved in salt tolerance by enhancing toxic ion (such as Na⁺) sequestration in betacyanic epidermal cells, storing Na⁺ away from sensitive mesophyll tissue. The Na⁺ localization between red and green leaves was compared after salinity treatment by using a sodium binding stain (SBFI-AM) and Cryo-SEM analysis. L-DOPA treated and natural red leaves sequestered Na⁺ ions to the epidermal cell layer. In contrast, green leaves retained Na⁺ in the mesophyll tissue, which suggested that red leaves were better equipped to tolerate salt-specific effects. Therefore, betacyanic plants were more tolerant to applied salinity stress and showed relatively higher growth rates than green morphs.  The findings of this thesis provide a significant contribution to our understanding of the role of betacyanins in plants under salinity stress. My data suggest that the multi-faceted properties of betacyanins (such as their photoprotective function, and their involvement in sequestration of toxic ions) clearly provide a benefit to plants under salinity stress.</p>


2021 ◽  
Author(s):  
◽  
Gagandeep Jain

<p>Foliar betalainic plants are commonly found in dry and exposed environments such as deserts and sandbanks. This marginal habitat has led many researchers to hypothesise that foliar betalains provide tolerance to abiotic stressors such as strong light, drought, salinity and low temperatures. Among these abiotic stressors, soil salinity is a major problem for agriculture affecting approximately 20% of the irrigated lands worldwide. Betacyanins may provide functional significance to plants under salt stress although this has not been unequivocally demonstrated. The purpose of this thesis is to add knowledge of the various roles of foliar betacyanins in plants under salt stress. For that, a series of experiments were performed on Disphyma australe, which is a betacyanic halophyte with two distinct colour morphs in vegetative shoots.  In chapter two, I aimed to find the effect of salinity stress on betacyanin pigmentation in D. australe and it was hypothesised that betacyanic morphs are physiologically more tolerant to salinity stress than acyanic morphs. Within a coastal population of red and green morphs of D. australe, betacyanin pigmentation in red morphs was a direct result of high salt and high light exposure. Betacyanic morphs were physiologically more tolerant to salt stress as they showed greater maximum CO₂ assimilation rates, water use efficiencies, photochemical quantum yields and photochemical quenching than acyanic morphs. Contrary to this, the green morphs, although possessing the ability to synthesise betalains in flower petals, did not produce betalains in vegetative shoots in response to salt stress. Moreover, green morphs, in terms of leaf photosynthesis, performed poorly under salinity stress.  In chapter three I further investigated the physiological benefit of betacyanin accumulation in D. australe. I postulated that betacyanin in the leaves of D. australe can protect the salt stressed chloroplasts from harmful excessive light by absorbing significant amount of radiation. To test this, a novel experimental approach was used; the key biosynthetic step for betacyanin synthesis was identified, which was deficient in vegetative shoots of the green morphs. By supplying the product of this enzymatic reaction, L-DOPA, betacyanin synthesis could be induced in the leaves of green morphs. This model system was used to compare the photoprotective responses of red vs. green leaves. The L-DOPA induced betacyanic leaves showed similar responses (such as smaller reductions and faster recoveries of PSII and less H₂O₂ production than in the green leaves) to naturally betacyanic leaves when exposed to high light and salinity. The differences in photoinhibition between red and green leaves were attributed to the light absorbing properties of betacyanins. L-DOPA treated and naturally red leaves showed lower photoinactivation than green leaves when exposed to white or green light, although not when exposed to monochromatic (red) light.  In chapter four, I used a similar experimental model to that in the third chapter and showed that other than photoprotection, betacyanins in leaves may be involved in salt tolerance by enhancing toxic ion (such as Na⁺) sequestration in betacyanic epidermal cells, storing Na⁺ away from sensitive mesophyll tissue. The Na⁺ localization between red and green leaves was compared after salinity treatment by using a sodium binding stain (SBFI-AM) and Cryo-SEM analysis. L-DOPA treated and natural red leaves sequestered Na⁺ ions to the epidermal cell layer. In contrast, green leaves retained Na⁺ in the mesophyll tissue, which suggested that red leaves were better equipped to tolerate salt-specific effects. Therefore, betacyanic plants were more tolerant to applied salinity stress and showed relatively higher growth rates than green morphs.  The findings of this thesis provide a significant contribution to our understanding of the role of betacyanins in plants under salinity stress. My data suggest that the multi-faceted properties of betacyanins (such as their photoprotective function, and their involvement in sequestration of toxic ions) clearly provide a benefit to plants under salinity stress.</p>


Sign in / Sign up

Export Citation Format

Share Document