Effects of dexamethasone on G protein levels and adenylyl cyclase activity in rat vascular smooth muscle cells

1992 ◽  
Vol 9 (3) ◽  
pp. 237-244 ◽  
Author(s):  
A. R. McLellan ◽  
S. Tawil ◽  
F. Lyall ◽  
G. Milligan ◽  
J. M. C. Connell ◽  
...  

ABSTRACT Dexamethasone administration in vitro has been shown to increase adenylyl cyclase activity in vascular smooth muscle cells (VSMC) from renal arteries and in non-vascular cell lines. To investigate whether G proteins are involved in this response, cultured VSMC from mesenteric arteries of Sprague—Dawley rats were incubated in the presence and absence of 10 nm dexamethasone for 24 and 48 h. Basal and stimulated adenylyl cyclase activities were increased by approximately 50% after treatment with dexamethasone. The changes were neither specifically associated with ligands which stimulate adenylyl cyclase catalytic unit via Gs (isoproterenol and prostaglandin E1) nor with guanylylimidodiphosphate (0·1 nm), which inhibits the catalytic unit via Gi. This suggests that dexamethasone enhances adenylyl cyclase activity through changes at the level of the catalytic unit, rather than through the G proteins which modulate its activity. No differences were seen in immunoblotting studies of the levels of Giα2, Gsα, Giα3 and β subunits. Similarly, dexamethasone had no effect on the expression of mRNA for Giα2 and Gsα. The results indicate that glucocorticoid-induced increases of adenylyl cyclase activity are due to changes at the level of the adenylyl cyclase catalytic unit rather than alteration of the levels or turnover of Gsα, Giα2, Giα3 and β subunits in the membranes of VSMC.

2011 ◽  
Vol 91 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Carl P. Nelson ◽  
Richard D. Rainbow ◽  
Jennifer L. Brignell ◽  
Matthew D. Perry ◽  
Jonathon M. Willets ◽  
...  

2005 ◽  
Vol 94 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Kouseki Hirade ◽  
Kumiko Tanabe ◽  
Masayuki Niwa ◽  
Akira Ishisaki ◽  
Keiichi Nakajima ◽  
...  

1997 ◽  
Vol 273 (2) ◽  
pp. H971-H980 ◽  
Author(s):  
J. Zhang ◽  
M. Sato ◽  
E. Duzic ◽  
S. W. Kubalak ◽  
S. M. Lanier ◽  
...  

The influence of arginine vasopressin (AVP) on agonist-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was investigated in vascular smooth muscle cells (VSMC) cultured from rat thoracic aorta. Incubation of VSMC with AVP for 60 s produced a 2- to 2.5-fold enhancement of isoproterenol-induced cAMP formation. AVP also increased cAMP stimulation by the prostaglandin I2 analogue iloprost. The effect of AVP to enhance agonist-stimulated cAMP formation was completely inhibited in cells pretreated with a selective antagonist of V1 vasopressin receptors but was not affected by blockade of V2 receptors. Inhibition of protein kinase C activation failed to alter the action of AVP to potentiate cAMP stimulation, but treatment of cells with calmodulin antagonists significantly attenuated this effect of the peptide. Moreover, depletion of Ca2+ stores with thapsigargin decreased AVP enhancement of isoproterenol-stimulated cAMP by > 70%. The action of AVP to increase cAMP stimulation was also demonstrated in freshly isolated strips of rat aorta where treatment with peptide produced a twofold increase in isoproterenol-stimulated cAMP formation. RNA blot analysis indicated expression in VSMC of mRNA encoding type III adenylyl cyclase, a Ca(2+)-calmodulin-sensitive isoform of the effector. Furthermore, when detergent-solubilized membrane extract was subjected to calmodulin affinity chromatography, a peak of adenylyl cyclase activity was identified which had affinity for calmodulin matrix in the presence of Ca2+. The results indicate that AVP activates V1 receptors in VSMC to enhance agonist-stimulated cAMP formation by a Ca(2+)-calmodulin-dependent mechanism and suggest that type III adenylyl cyclase may provide a focal point in the VSMC for cross talk between constrictor and dilator pathways.


Sign in / Sign up

Export Citation Format

Share Document