camp stimulation
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 3)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
Vol 22 (5) ◽  
pp. 2554
Author(s):  
Sathvika Venugopal ◽  
Melanie Galano ◽  
Rachel Chan ◽  
Esha Sanyal ◽  
Leeyah Issop ◽  
...  

Lipids play essential roles in numerous cellular processes, including membrane remodeling, signal transduction, the modulation of hormone activity, and steroidogenesis. We chose steroidogenic MA-10 mouse tumor Leydig cells to investigate subcellular lipid localization during steroidogenesis. Electron microscopy showed that cAMP stimulation increased associations between the plasma membrane (PM) and the endoplasmic reticulum (ER) and between the ER and mitochondria. cAMP stimulation also increased the movement of cholesterol from the PM compared to untreated cells, which was partially inhibited when ATPase family AAA-domain containing protein 3 A (ATAD3A), which functions in ER and mitochondria interactions, was knocked down. Mitochondria, ER, cytoplasm, PM, PM-associated membranes (PAMs), and mitochondria-associated membranes (MAMs) were isolated from control and hormone-stimulated cells. Lipidomic analyses revealed that each isolated compartment had a unique lipid composition, and the induction of steroidogenesis caused the significant remodeling of its lipidome. cAMP-induced changes in lipid composition included an increase in phosphatidylserine and cardiolipin levels in PAM and PM compartments, respectively; an increase in phosphatidylinositol in the ER, mitochondria, and MAMs; and a reorganization of phosphatidic acid, cholesterol ester, ceramide, and phosphatidylethanolamine. Abundant lipids, such as phosphatidylcholine, were not affected by hormone treatment. Our data suggested that PM–ER–mitochondria tethering may be involved in lipid trafficking between organelles and indicated that hormone-induced acute steroid production involves extensive organelle remodeling.


2020 ◽  
Vol 31 (10) ◽  
pp. 2355-2371 ◽  
Author(s):  
Shohei Kuraoka ◽  
Shunsuke Tanigawa ◽  
Atsuhiro Taguchi ◽  
Akitsu Hotta ◽  
Hitoshi Nakazato ◽  
...  

BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease leading to renal failure, wherein multiple cysts form in renal tubules and collecting ducts derived from distinct precursors: the nephron progenitor and ureteric bud (UB), respectively. Recent progress in induced pluripotent stem cell (iPSC) biology has enabled cyst formation in nephron progenitor–derived human kidney organoids in which PKD1 or PKD2, the major causative genes for ADPKD, are deleted. However, cysts have not been generated in UB organoids, despite the prevalence of collecting duct cysts in patients with ADPKD.MethodsCRISPR-Cas9 technology deleted PKD1 in human iPSCs and the cells induced to differentiate along pathways leading to formation of either nephron progenitor or UB organoids. Cyst formation was investigated in both types of kidney organoid derived from PKD1-deleted iPSCs and in UB organoids generated from iPSCs from a patient with ADPKD who had a missense mutation.ResultsCysts formed in UB organoids with homozygous PKD1 mutations upon cAMP stimulation and, to a lesser extent, in heterozygous mutant organoids. Furthermore, UB organoids generated from iPSCs from a patient with ADPKD who had a heterozygous missense mutation developed cysts upon cAMP stimulation.ConclusionsCysts form in PKD1 mutant UB organoids as well as in iPSCs derived from a patient with ADPKD. The organoids provide a robust model of the genesis of ADPKD.


2019 ◽  
Vol 7 (19) ◽  
Author(s):  
Karim Sahbani ◽  
Christopher P. Cardozo ◽  
William A. Bauman ◽  
Hesham A. Tawfeek
Keyword(s):  

2018 ◽  
Author(s):  
Chung-Ming Tse ◽  
Jianyi Yin ◽  
Varsha Singh ◽  
Rafiquel Sarker ◽  
Ruxian Lin ◽  
...  

AbstractBackground & AimsDRA (SLC26A3) is an electroneutral Cl-/HCO3- exchanger that is present in the apical domain of multiple intestinal segments. An area that has continued to be poorly understood is related to DRA regulation in acute cAMP-related diarrheas, in which DRA appears to be both inhibited as part of NaCl absorption and stimulated to contribute to increased HCO3- secretion. Different cell models expressing DRA have shown that cAMP inhibits, stimulates or does not affect its activity.MethodsThis study reevaluated cAMP regulation of DRA using new “tools” including a successful knockout cell model, a specific DRA inhibitor (DRAinh-A250), specific antibodies, and a transport assay that did not rely on non-specific inhibitors. The studies compared DRA regulation in colonoids made from normal human colon with regulation in the colon cancer cell line, Caco-2.ResultsDRA is an apical protein in human proximal colon, differentiated colonoid monolayers and Caco-2 cells. It is glycosylated and appears as two bands. cAMp(forskolin) acutely stimulated DRA activity in human colonoids and Caco-2 cells. In these cells, DRA is the predominant apical Cl-/HCO3- exchanger and is inhibited by DRAinh-A250 with IC50 of 0.5 μmol/L and 0.2 µmol/L, respectively. However, there was no effect of cAMP in HEK293/DRA cells that lacked CFTR. When CFTR was expressed in HEK293/DRA cells, cAMP also stimulated DRA activity. In all cases, cAMP stimulation of DRA was not inhibited by CFTRinh-172.ConclusionsDRA is acutely stimulated by cAMP by a process that is CFTR-dependent but appears to be one of multiple regulatory effects of CFTR that does not require CFTR activity.


2018 ◽  
Vol 10 (2) ◽  
pp. 211-212
Author(s):  
S. Idres ◽  
G. Perrin ◽  
V. Domergue ◽  
F. Lefebvre ◽  
R. Fischmeister ◽  
...  

2018 ◽  
Author(s):  
Andrea Saponaro ◽  
Francesca Cantini ◽  
Alessandro Porro ◽  
Annalisa Bucchi ◽  
Dario Di Francesco ◽  
...  

AbstractThe auxiliary subunit TRIP8b prevents cAMP activation of HCN channels by antagonizing its binding to their cyclic-nucleotide binding domain (CNBD). By determining an NMR-derived structure of the complex formed by the HCN2 channel CNBD and a minimal TRIP8b fragment, TRIPnano, we show here a bipartite interaction between the peptide and CNBD which prevents cAMP binding in two ways: through direct competition for binding at the distal C-helix of the CNBD; and through an allosteric reduction in cAMP affinity induced by TRIP8b binding to the CNBD N-bundle loop. TRIPnano abolishes cAMP binding in all three isoforms, HCN1, HCN2 and HCN4 and can be used to prevent cAMP stimulation in native f-channels. Application of TRIP8bnano, or its delivery via a cell-penetrating sequence, in sinoatrial node myocytes, selectively inhibits beta-adrenergic stimulation of the native If current and mimics the physiological concentrations of acetylcholine leading to a 30% reduction in the spontaneus rate of action potential firing.


2017 ◽  
Vol 59 (3) ◽  
pp. 269-283 ◽  
Author(s):  
Zhigang Hu ◽  
Wen-Jun Shen ◽  
Fredric B Kraemer ◽  
Salman Azhar

miR-132 is hormonally regulated in steroidogenic cells of the adrenal gland, ovary and testis. Here, we examined the potential role of miR-132 in the control of steroidogenesis. Transfection of Y1 adrenal cells with miR-132 increased mRNAs of 3β-HSD and 20α-HSD enzymes, which catalyze the sequential conversion of pregnenolone to progesterone to biologically inactive 20α-hydroxyprogesterone (20α-OHP). Overexpression of miR-132 reduced MeCP2 and StAR protein expression, basal progestin (progesterone and 20α-OHP) production, but enhanced their production in response to cAMP stimulation. Use of [3H] pregnenolone and free-diffusible 22(R)-hydroxycholesterol further confirmed that miR-132 promotes the production of 20α-OHP by upregulating 3β-HSD and 20α-HSD. Evidence is also presented that StAR is a direct target of miR-132. Transient transfection of Y1 cells with miR-132 demonstrated that miR-132 induction of 3β-HSD and 20α-HSD was accompanied by significant suppression of one of its target gene products, MeCP2. In contrast, co-expression of miR-132 plus MeCP2 protein partially blocked the ability of miR-132 to upregulate the expression and function of 3β-HSD and 20α-HSD. Moreover, suppression of MeCP2 protein with siRNA resulted in increased expression of 3β-HSD and 20α-HSD, further demonstrating that miR-132 induces the expression of these two enzymes via inhibition of MeCP2. Likewise, overexpression of miR-132 increased 20α-OHP production with and without HDL loading, while knockdown of miR-132 resulted in a significant decrease of 20α-OHP production by granulosa cells. In conclusion, our data suggest that miR-132 attenuates steroidogenesis by repressing StAR expression and inducing 20α-HSD via inhibition of MeCP2 to generate a biologically inactive 20α-OHP.


2016 ◽  
Vol 8 (3) ◽  
pp. 250-251
Author(s):  
Sarah Idres ◽  
Germain Perrin ◽  
Rodolphe Fischmeister ◽  
Véronique Leblais ◽  
Boris Manoury
Keyword(s):  

2014 ◽  
Vol 25 (20) ◽  
pp. 3210-3221 ◽  
Author(s):  
Xiumei Cao ◽  
Jianshe Yan ◽  
Shi Shu ◽  
Joseph A. Brzostowski ◽  
Tian Jin

Oscillation of chemical signals is a common biological phenomenon, but its regulation is poorly understood. At the aggregation stage of Dictyostelium discoideum development, the chemoattractant cAMP is synthesized and released at 6-min intervals, directing cell migration. Although the G protein–coupled cAMP receptor cAR1 and ERK2 are both implicated in regulating the oscillation, the signaling circuit remains unknown. Here we report that D. discoideum arrestins regulate the frequency of cAMP oscillation and may link cAR1 signaling to oscillatory ERK2 activity. Cells lacking arrestins (adcB−C−) display cAMP oscillations during the aggregation stage that are twice as frequent as for wild- type cells. The adcB−C− cells also have a shorter period of transient ERK2 activity and precociously reactivate ERK2 in response to cAMP stimulation. We show that arrestin domain–containing protein C (AdcC) associates with ERK2 and that activation of cAR1 promotes the transient membrane recruitment of AdcC and interaction with cAR1, indicating that arrestins function in cAR1-controlled periodic ERK2 activation and oscillatory cAMP signaling in the aggregation stage of D. discoideum development. In addition, ligand-induced cAR1 internalization is compromised in adcB−C− cells, suggesting that arrestins are involved in elimination of high-affinity cAR1 receptors from cell surface after the aggregation stage of multicellular development.


2014 ◽  
Vol 592 (23) ◽  
pp. 5169-5186 ◽  
Author(s):  
Ali M. Komai ◽  
Cecilia Brännmark ◽  
Saliha Musovic ◽  
Charlotta S. Olofsson

Sign in / Sign up

Export Citation Format

Share Document