Developmental changes in the distribution of pro-opiomelanocortin and prolactin mRNA in the pituitary of the ovine fetus and lamb

1994 ◽  
Vol 13 (2) ◽  
pp. 175-185 ◽  
Author(s):  
S G Matthews ◽  
X Han ◽  
F Lu ◽  
J R G Challis

ABSTRACT Ontogenic changes in pituitary pro-opiomelanocortin (POMC) mRNA and prolactin (PRL) mRNA were examined during gestation and early neonatal life using in situ hybridization histochemistry. Pituitaries were harvested from fetuses at days 60–80, 100–120, 135–140 and 142–143 of gestation and at term, and from lambs at days 1–7 and 30–60 of age and adults. POMC mRNA, present by day 60, rose during mid- and late gestation. Concurrently there was a change in corticotroph distribution, resulting in a relatively greater quantity of POMC mRNA at the base of the pars distalis. At term, there was a significant (P<0·05) further elevation of POMC mRNA. POMC mRNA levels remained high in the newborn lamb but decreased in the adult. Cells in the pars intermedia expressed large amounts of POMC mRNA early in fetal life and this pattern persisted throughout gestation and into the neonatal period. Changes in the expression of the POMC gene correlated closely with the presence of immunoreactive (ir)ACTH in the pituitary; in fetuses the proportion of irACTH-positive cells rose to 10% of pars distalis cells by day 100 and did not change significantly thereafter. The lactotrophs contained PRL mRNA by day 60, and the quantity increased towards parturition (P<0·05). PRL mRNA subsequently decreased in the neonate, but rose as the lamb matured. These results indicate that in the fetal pituitary: (1) the POMC gene is highly expressed during gestation in both the pars distalis and the pars intermedia, (2) changes in the amounts of POMC mRNA and PRL mRNA in the pars distalis correlate with the distribution of irACTH and irPRL respectively, and (3) POMC mRNA is distributed primarily in the inferior aspect of the pars distalis, and in this region its quantity is highest immediately prior to parturition.

1995 ◽  
Vol 144 (3) ◽  
pp. 483-490 ◽  
Author(s):  
S G Matthews ◽  
K Yang ◽  
J R G Challis

Abstract Developmental changes in pituitary glucocorticoid receptor (GR) mRNA were examined during gestation and early neonatal life using in situ hybridization. Pituitaries were harvested from sheep fetuses at days 60–80, 100–120, 130–135, 140–142 and term, and from lambs of days 0–7 and 30–60, and adults. GR mRNA was present in the pars distalis by day 60, levels increased through gestation, and there was a redistribution of GR mRNA, resulting in a relatively greater abundance at the base of the pars distalis. At term, there was a significant (P<0·05 compared with the day 140–142 fetuses) elevation of GR mRNA, which was maintained in the newborn lamb, reaching highest levels at days 30–60 of neonatal life. GR mRNA was undetectable in the pars intermedia until day 120, but subsequently increased to high levels at term. Interestingly, the expression of GR mRNA in the pars intermedia dropped precipitously in the newborn (P<0·05 compared with term), though levels recovered in the older lambs and adults. The regional and cellular distribution of GR mRNA correlated closely with the presence of immuno-reactive GR (irGR) in the pituitary; the majority of irGR was present in the nuclei. Intrafetal infusion of cortisol (12 h; 5 μg/min) in late gestation (day 135) had no effect on GR mRNA expression in either the pars distalis or pars intermedia. These results indicated that, in the fetal pituitary, (1) the GR gene is expressed in both the pars distalis and pars intermedia, (2) levels of GR mRNA in the fetal pituitary correlated with the distribution of nuclear irGR, (3) GR mRNA is present at higher levels in the inferior aspect of the pars distalis, its abundance increases immediately prior to parturition and is maintained in the newborn, and (4) cortisol infusion for 12 h does not affect GR mRNA in either region of the pituitary, suggesting that, in the short term, glucocorticoids do not directly regulate GR synthesis. Journal of Endocrinology (1995) 144, 483–490


1998 ◽  
Vol 274 (3) ◽  
pp. E417-E425 ◽  
Author(s):  
T. M. Jeffray ◽  
S. G. Matthews ◽  
G. L. Hammond ◽  
J. R. G. Challis

Plasma concentrations of cortisol and adrenocorticotropic hormone (ACTH) rise in the late-gestation sheep fetus at approximately the same time as there is an increase in the plasma levels of corticosteroid- binding globulin (CBG). We hypothesized that intrafetal cortisol infusion during late pregnancy would stimulate an increase in fetal plasma CBG, which in turn would bind cortisol and diminish glucocorticoid negative-feedback regulation of the fetal pituitary, leading to an increase in plasma ACTH concentrations. Cortisol was infused into chronically catheterized fetal sheep beginning at 126.1 ± 0.5 days of gestation and continued for 96 h. Control fetuses were infused with saline. In cortisol-infused fetuses, the plasma cortisol concentrations rose significantly from control levels (4.4 ± 0.6 ng/ml) to 19.3 ± 3.1 ng/ml within 24 h and remained significantly elevated throughout the infusion period. Plasma immunoreactive (ir) ACTH concentrations were significantly elevated in cortisol-infused fetuses within 24–48 h and remained significantly higher than in controls throughout the 96-h experimental period. Plasma free cortisol concentrations increased 10-fold and remained significantly elevated in cortisol-infused animals, despite a rise in plasma corticosteroid-binding capacity. Levels of pituitary proopiomelanocortin (POMC) mRNA in the fetal pars distalis and pars intermedia were 96 and 38% lower, respectively, after 96 h of cortisol infusion. Therefore physiological elevations of plasma cortisol, in the late-gestation ovine fetus, lead to increases in mean plasma irACTH concentrations, but this is not associated with increases in fetal pituitary POMC mRNA levels.


1995 ◽  
Vol 147 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S G Matthews ◽  
J R G Challis

Abstract It is well established that corticotrophin-releasing hormone and vasopressin can induce both synthesis and release of ACTH from the ovine pituitary gland, and that glucocorticoids can inhibit these responses. Changes in the abundance, localization and distribution of proopiomelanocortin (POMC) mRNA and prolactin (PRL) mRNA in the ovine fetal pituitary were examined by in situ hybridization following hypoxaemia applied in the presence or absence of concomitant cortisol in late gestation (day 135). Fetuses were distributed amongst four groups; saline-infused/normoxaemic, cortisol-infused/normoxaemic (0·3 mg/h), saline-infused/hypoxaemic and cortisol-infused/hypoxaemic. Hypoxaemia (6 h) was induced by reducing the maternal PaO2, resulting in a 6–8 mmHg decrease in fetal arterial PO2. Fetal infusions were commenced 5 h prior to and maintained throughout the treatment period. Hypoxaemia, which elevated fetal plasma ACTH and cortisol, caused a significant (P<0·05) increase in POMC mRNA in the pars distalis (PD), but was without effect on POMC mRNA in the pars intermedia (PI). Cortisol infusion attenuated the hypoxaemiainduced increase in POMC mRNA in the PD, but was without effect on non-stimulated steady-state POMC mRNA levels in either the PD or PI. PRL mRNA was only present in the PD and significantly (P<0·05) increased after cortisol infusion and hypoxaemia. In conclusion (i) POMC and PRL mRNA in the PD are increased following moderate hypoxaemia, (ii) cortisol attenuates changes in POMC mRNA but not PRL mRNA in the PD following hypoxaemia and (iii) cortisol increases PRL mRNA levels in the PD. Synthesis of POMC and PRL in the fetal PD is highly sensitive to homeostatic perturbations and glucocorticoids in late gestation. Journal of Endocrinology (1995) 147, 139–146


2002 ◽  
Vol 283 (1) ◽  
pp. E165-E171 ◽  
Author(s):  
Alison C. Holloway ◽  
David C. Howe ◽  
Gabriel Chan ◽  
Vicki L. Clifton ◽  
Roger Smith ◽  
...  

We hypothesized that urocortin might be produced in the pituitary of the late-gestation ovine fetus in a manner that could contribute to the regulation of ACTH output. We used in situ hybridization and immunohistochemistry to identify urocortin mRNA and protein in late-gestation fetal pituitary tissue. Levels of urocortin mRNA rose during late gestation and were associated temporally with rising concentrations of pituitary proopiomelanocortin (POMC) mRNA. Urocortin was localized both to cells expressing ACTH and to non-ACTH cells by use of dual immunofluorescence histochemistry. Transfection of pituitary cultures with urocortin antisense probe reduced ACTH output, whereas added urocortin stimulated ACTH output from cultured pituitary cells. Cortisol infusion for 96 h in chronically catheterized late-gestation fetal sheep significantly stimulated levels of pituitary urocortin mRNA. We conclude that urocortin is expressed in the ovine fetal pituitary and localizes with, and can stimulate output of, ACTH. Regulation of urocortin by cortisol suggests a mechanism to override negative feedback and sustain feedforward of fetal hypothalamic-pituitary-adrenal function, leading to birth.


1996 ◽  
Vol 271 (4) ◽  
pp. E678-E685 ◽  
Author(s):  
J. Murotsuki ◽  
R. Gagnon ◽  
S. G. Matthews ◽  
J. R. Challis

To test the hypothesis that long-term hypoxemia causes premature activation of the fetal pituitary-adrenal function, we embolized the fetal side of the placenta in pregnant sheep and examined the changes in concentrations of immunoreactive adrenocorticotropic hormone (irACTH), cortisol, and prostaglandin E2 (PGE2) in fetal plasma, and levels and localization of proopiomelanocortin (POMC) mRNA in the pars distalis and the pars intermedia of the fetal pituitary. Twelve fetal sheep were studied (6 embolized and 6 control) for 21 days between 0.74 and 0.88 of gestation. Daily injections of nonradiolabeled microspheres were given into the fetal abdominal aorta to decrease fetal arterial oxygen content by 40-50% of the preembolization values. In the embolized group, concentrations of irACTH, PGE2, and cortisol in fetal plasma increased gradually and were significantly (P < 0.05) elevated above those of controls after day 10, day 16, and day 20, respectively. POMC mRNA levels in the pars distalis of the fetal pituitary were not different from those of controls but were significantly reduced in the pars intermedia (P < 0.05). We conclude that levels of POMC mRNA in the pars distalis are unchanged during long-term hypoxemia possibly because of negative feedback effects of elevated cortisol on the pituitary gland. During long-term fetal hypoxemia, there is a differential regulation of POMC mRNA expression in the pars distalis and pars intermedia.


1993 ◽  
Vol 129 (3) ◽  
pp. 263-267 ◽  
Author(s):  
Jennifer J Merei ◽  
Alix Rao ◽  
lain J Clarke ◽  
I Caroline McMillen

We have measured the relative levels of proopiomelanocortin (POMC), prolactin (PRL) and growth hormone (GH) messenger ribonucleic acid (mRNA) in the anterior and neurointermediate lobes of the fetal pituitary during the last 2–3 weeks of gestation. The mean POMC mRNA/18S RNA ratio in the fetal anterior pituitary was significantly greater (p<0.02) at 130–136 days (0.90±0.08; N=9) than at 141–143 days of gestation (0.67±0.07; N=6). In contrast, the mean PRL mRNA/18S RNA ratio increased significantly (p< 0.02) ) between 130 and 136 days (0.31±0.05; N = 9) when compared with 141–143 days of gestation (0.58±0.10; N = 6). There was no significant difference, however, between the mean GH mRNA/18S RNA ratio in fetal anterior pituitaries at 130–136 days (0.95±0.04; N = 9) when compared with 141–143 days of gestation (1.08±0.14; N=6). The POMC mRNA/18S RNA ratio in the neurointermediate lobes was seven-, five- and tenfold higher than in anterior pituitaries at 130–134, 135–136 and 141–143 days of gestation, respectively. We hypothesize that elevated circulating cortisol levels after 140 days of gestation act in the slow time domain (i.e. over days) to suppress POMC gene expression and that the increase in fetal pituitary PRL mRNA levels may be a consequence of oestrogen stimulation in late gestation.


1995 ◽  
Vol 14 (1) ◽  
pp. 109-116 ◽  
Author(s):  
K Yang ◽  
S G Matthews ◽  
J R G Challis

ABSTRACT To examine the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the control of glucocorticoid actions in the ovine pituitary during development, we have sought developmental changes in the distribution and the level of 11β-HSD1 mRNA by in situ hybridization. In the pars distalis, 11β-HSD1 mRNA was present by day 60; its amount did not change significantly until term (days 145–147) when it increased dramatically. The level of 11β-HSD1 mRNA increased further during the postnatal period. In contrast, 11β-HSD1 mRNA in the pars intermedia was not detectable until day 135; it increased in amount at days 140–143, but did not change significantly thereafter through to adulthood. We have also measured levels of both dehydrogenase and reductase activities of 11β-HSD1 in the pars distalis of fetal sheep at day 140 and term, and of postnatal sheep at 1–2 months of age, to determine whether changes in 11β-HSD1 mRNA are reflected in the levels of enzyme activities. There were progressive increases in both dehydrogenase and reductase activities from day 140 to 1–2 months postnatally, although dehydrogenase activity was consistently higher than reductase activity. Finally, we have determined the effect of short-term intrafetal cortisol infusion (5 μg/min for 12 h) on levels of pituitary 11β-HSD1 mRNA by in situ hybridization. There was no effect of cortisol infusion on 11β-HSD1 mRNA expression. The present results demonstrate that 11β-HSD mRNA and enzyme activity in the pars distalis of fetal sheep increase dramatically at term when plasma levels of both ACTH and cortisol are elevated. This suggests that 11β-HSD1 may contribute to the proposed resetting of cortisol negative feedback within the fetal pituitary at that time.


Reproduction ◽  
2016 ◽  
pp. 195-204 ◽  
Author(s):  
Qi-Tao Huang ◽  
Oksana Shynlova ◽  
Mark Kibschull ◽  
Mei Zhong ◽  
Yan-Hong Yu ◽  
...  

Uterine tissues contain the efflux transporter P-glycoprotein (P-gp, encoded by Abcb1a/1b gene), but little is known about how it changes through gestation. Our aim was to investigate the expression profile and cellular localization of P-gp in the pregnant, laboring and post-partum (PP) rat uterus. We propose that during pregnancy the mechanical and hormonal stimuli play a role in regulating myometrial Abcb1a/1b/P-gp. Samples from bilaterally and unilaterally pregnant rats were collected throughout gestation, during labor, and PP (n=4–6/gestational day). RNA and protein were isolated and subjected to quantitative PCR and immunoblotting; P-gp transcript and protein were localized by in situ hybridization and immunohistochemistry. Expression of Abcb1a/1b gene and membrane P-gp protein in uterine tissue (1) increased throughout gestation, peaked at term (GD19-21) and dropped during labor (GD23L); and (2) was upregulated only in gravid but not in empty horn of unilaterally pregnant rats. (3) The drop of Abcb1a/1b mRNA on GD23 was prevented by artificial maintenance of elevated progesterone (P4) levels in late gestation; (4) injection of the P4 receptor antagonist RU486 on GD19 caused a significant decrease in Abcb1 mRNA levels. (5) In situ hybridization and immunohistochemistry indicated that Abcb1/P-gp is absent from myometrium throughout gestation; (6) was expressed exclusively by uterine microvascular endothelium (at early gestation) and luminal epithelium (at mid and late gestation), but was undetectable during labor. In conclusion, ABC transporter protein P-gp in pregnant uterus is hormonally and mechanically regulated. However, its substrate(s) and precise function in these tissues during pregnancy remains to be determined.


1995 ◽  
Vol 14 (3) ◽  
pp. 323-336 ◽  
Author(s):  
F Lü ◽  
K Yang ◽  
V K M Han ◽  
J R G Challis

ABSTRACT Activation of the fetal pituitary-adrenal axis is crucial for fetal organ maturation and the onset of parturition in sheep. Many factors including corticotrophin-releasing hormone (CRH) and arginine vasopressin secreted from the hypothalamus, and growth factors produced within the pituitary may be involved in the regulation of maturation of the fetal pituitary gland. IGFs have mitogenic and differentiation-promoting capacities in a variety of organs and are synthesized as paracrine factors within developing tissues. However, there is little information concerning the synthesis, distribution, regulation and function of IGFs in the fetal pituitary gland at different times during pregnancy. Therefore, we have localized IGF-I and IGF-II mRNAs and peptides, and determined the effect of cortisol on the level of IGF-II mRNAs in the pituitary glands of developing sheep fetuses. We examined the possible effects of IGFs on corticotroph function in cultures of adenohypophysial cells from term fetuses. Seven species of IGF-II transcripts of 1·2–6·0 kb were identified by Northern blot analysis in the pituitary gland of fetuses between day 60 of gestation and term (day 145). The levels of IGF-II mRNAs did not change significantly during pregnancy, although there was a trend for the presence of higher levels of IGF-II mRNAs at day 60 of gestation. IGF-I mRNA was not detectable. By in situ hybridization, IGF-II mRNA was localized to non-endocrine cells and to cells lining the blood vessels of the pars distalis, to some presumed endocrine cells in the pars distalis and pars intermedia, and to clusters of cells in the pars nervosa. In contrast, IGF-I and IGF-II peptides were detected in the presumed endocrine cells in the pars distalis and pars intermedia but not in the pars nervosa. Incubation of adenohypophysial cells from term fetuses with IGF-I, but not IGF-II, for 48 h increased specific 125I-Tyr-ovine CRH binding. However, neither IGF-I nor IGF-II had any significant effects on the basal or CRH-stimulated immunoreactive (ir)-ACTH output, the level of POMC mRNA or the number of ir-ACTH positive cells. Infusion of cortisol to fetuses starting at day 96 of gestation for 100 h or at days 120–125 of gestation for 84 h did not affect the level of IGF-II mRNAs in the pars distalis but decreased the levels of POMC mRNA. These results are consistent with IGFs having the potential to influence fetal pituitary function, although probably on cell types other than the corticotrophs. The likely sources of IGFs may be predominantly local (IGF-II) or from extrapituitary sources (IGF-I).


2006 ◽  
Vol 37 (3) ◽  
pp. 443-452 ◽  
Author(s):  
Edwin J W Geven ◽  
Folkert Verkaar ◽  
Gert Flik ◽  
Peter H M Klaren

The effect of experimental hyperthyroidism, realized by T4 injection, on central mediators of the hypothalamo–pituitary–interrenal axis (HPI-axis) in common carp (Cyprinus carpio L.) was studied. Our results show that hyperthyroidism evokes a marked 3.2-fold reduction in basal plasma cortisol levels. Corticotropin-releasing hormone-binding protein (CRH-BP) mRNA levels in the hypothalamus, measured by real-time quantitative PCR, were significantly elevated by 40%, but CRH, urotensin-I, prepro-TRH, prohormone convertase-1 (PC1), and POMC mRNA levels were unchanged. In the pituitary pars distalis, PC1, CRH receptor-1, and POMC mRNA levels were unaffected, as was ACTH content. Plasma α-MSH concentrations were significantly elevated by 30% in hyperthyroid fish, and this was reflected in PC1 and POMC mRNA levels in pituitary pars intermedia that were increased 1.5- and 2.4-fold respectively. The α-MSH content of the pars intermedia was unchanged. Hyperthyroidism has profound effects on the basal levels of a central mediator, i.e., CRH-BP, of HPI-axis function in unstressed carp in vivo, and we conclude that HPI- and hypothalamo–pituitary–thyroid-axis functions are strongly interrelated. We suggest that the changes in plasma cortisol, thyroid hormone, and α-MSH levels reflect their concerted actions on energy metabolism.


Sign in / Sign up

Export Citation Format

Share Document