scholarly journals Thyroid hormone action in mitochondria

2001 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
C Wrutniak-Cabello ◽  
F Casas ◽  
G Cabello

Triiodothyronine (T3) is considered a major regulator of mitochondrial activity. In this review, we show evidence of the existence of a direct T3 mitochondrial pathway, and try to clarify the respective importance of the nuclear and mitochondrial pathways for organelle activity. Numerous studies have reported short-term and delayed T3 stimulation of mitochondrial oxygen consumption. Convincing data indicate that an early influence occurs through an extra-nuclear mechanism insensitive to inhibitors of protein synthesis. Although it has been shown that diiodothyronines could actually be T3 mediators of this short-term influence, the detection of specific T3-binding sites, probably corresponding to a 28 kDa c-Erb Aalpha1 protein of the inner membrane, also supports a direct T3 influence. The more delayed influence of thyroid hormone upon mitochondrial respiration probably results from mechanisms elicited at the nuclear level, including changes in phospholipid turnover and stimulation of uncoupling protein expression, leading to an increased inner membrane proton leak. However, the involvement of a direct mitochondrial T3 pathway leading to a rapid stimulation of mitochondrial protein synthesis has to be considered. Both pathways are obviously involved in the T3 stimulation of mitochondrial genome transcription. First, a 43 kDa c-Erb Aalpha1 protein located in the mitochondrial matrix (p43), acting as a potent T3-dependent transcription factor of the mitochondrial genome, induces early stimulation of organelle transcription. In addition, T3 increases mitochondrial TFA expression, a mitochondrial transcription factor encoded by a nuclear gene. Similarly, the stimulation of mitochondriogenesis by thyroid hormone probably involves both pathways. In particular, the c-erb Aalpha gene simultaneously encodes a nuclear and a mitochondrial T3 receptor (p43), thus ensuring coordination of the expression of the mitochondrial genome and of nuclear genes encoding mitochondrial proteins. Recent studies concerning the physiological importance of the direct mitochondrial T3 pathway involving p43 led to the conclusion that it is not only involved in the regulation of fuel metabolism, but also in the regulation of cell differentiation. As the processes leading to or resulting from differentiation are energy-consuming, p43 coordination of metabolism and differentiation could be of significant importance in the regulation of development.

1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


2005 ◽  
Vol 81 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Vincent GM Geukers ◽  
Johanna H Oudshoorn ◽  
Jan AJM Taminiau ◽  
Cornelis K van der Ent ◽  
Piet Schilte ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Ronny Lesmana ◽  
Rohit A. Sinha ◽  
Brijesh K. Singh ◽  
Jin Zhou ◽  
Kenji Ohba ◽  
...  

Abstract Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5′adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)- Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5′adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation.


1973 ◽  
Vol 72 (4) ◽  
pp. 684-696 ◽  
Author(s):  
Amirav Gordon ◽  
Martin I. Surks ◽  
Jack H. Oppenheimer

ABSTRACT The in vivo and in vitro stimulation of rat hepatic mitochondrial protein synthesis by thyroxine (T4) was compared. In confirmation of Buchanan & Tapley (1966). T4 added to isolated mitochondria rapidly stimulated [14C] leucine incorporation into mitochondrial protein. The in vitro stimulation was reversed after T4 was removed by incubating the mitochondria with bovine serum albumin (BSA). The decrease in T4 stimulation of protein synthesis appeared proportional to the T4 removed by BSA. Thus, it appears probable that exchangeable T4 controls the in vitro system. In contrast, the increase in mitochondrial protein synthesis which was observed 3 to 4 days after pretreatment of hypothyroid rats with labelled and non-radioactive T4 was not reversed by BSA treatment. Moreover, mitochondrial radioactivity could not be extracted with albumin. The in vivo phenomenon does not, therefore, appear to be related to exchangeable hormone in the mitochondria. Furthermore, the estimated quantity of T4 associated with mitochondria after in vivo stimulation was at least two orders of magnitude less than that required to produce comparable stimulation of mitochondrial protein synthesis in vitro. These findings strongly suggest that in vitro and in vivo stimulation of amino acid incorporation by T4 may be mediated by different biochemical mechanisms.


Sign in / Sign up

Export Citation Format

Share Document