scholarly journals Molecular cloning and characterization of α1-soluble guanylyl cyclase gene promoter in rat pituitary cells

2006 ◽  
Vol 37 (3) ◽  
pp. 503-515 ◽  
Author(s):  
Yonghua Jiang ◽  
Stanko S Stojilkovic

Soluble guanylyl cyclase is a cytosolic enzyme which catalyzes conversion of GTP to the second messenger cyclic GMP. The transcriptional regulation at the promoter levels of four soluble guanylyl cyclase subunits, termed α1, α2, β1, and β2, is largely unknown. In this study, we identified the transcription start site of α1-soluble guanylyl cyclase gene in rat pituitary cells and cloned the 3.5 kb 5′-promoter. Sequence analysis of this TATA-less promoter revealed the presence of several putative-binding sites for transcriptional factors, including CCAAT site at −41 to −32 and Sp1 site at −34 to −24. Transfection of pituitary cells with constructs of variable lengths confirmed the relevance of different promoter regions in the control of transcriptional activity. Among them, the −49 to + 156 region was critical for basal transcriptional activity. Electrophoretic mobility shift assay using nuclear proteins extracted from normal and immortalized pituitary cells indicated that the CCAAT/Sp1 site within the −49 to + 156 region was able to specifically interact with CCAAT-binding factor and Sp1. These two sites were partly overlapped and both of them conferred stimulatory effects. The in vivo recruitment of CCAAT-binding factor and Sp1 was confirmed by chromatin immunoprecipitation. These results indicate that the composite CCAAT/Sp1 cis-element contributes to the expression of α1-sGC subunit in resting pituitary cells.

1990 ◽  
Vol 125 (3) ◽  
pp. 425-432 ◽  
Author(s):  
G. Robinson ◽  
J. J. Evans

ABSTRACT We previously demonstrated that oxytocin stimulates LH release from rat pituitary cells in vitro and advances follicular development and ovulation in mice in vivo. This study reports an investigation of rat LH levels following in-vivo administration of oxytocin. Injection of oxytocin (10 mIU/g, i.p.) to rats at 07.00, 08.00 and 09.00 h of pro-oestrus or at 09.00, 10.00 and 11.00 h of pro-oestrus advanced the onset of the LH surge (P<0.005) and attainment of peak concentrations of LH (P<0.02) in peripheral blood. On the other hand, the descending phase of the LH surge and the surge amplitude were not altered by oxytocin. Treatment at 05.00, 06.00 and 07.00 h of pro-oestrus or at 11.00, 12.00 and 13.00 h of pro-oestrus had no effect on the LH profile. A higher oxytocin dose (20 mIU/g) inhibited LH release when treatment was begun at 05.00, 07.00 or 09.00 h of pro-oestrus. A lower dose (5 mIU/g) was ineffective in altering LH concentrations. In addition, injections of oxytocin (10 mIU/g) at oestrus, metoestrus or dioestrus had no effect on the release of LH. Thus the efficacy of oxytocin in altering concentrations of LH was dose dependent and also critically affected by the day of the oestrous cycle and the time of pro-oestrus. Removal of endogenous oxytocin activity by the use of an oxytocin receptor antagonist abolished the pro-oestrous LH surge, indicating that oxytocin is a vital physiological component of the LH-releasing mechanism in rats. The study provides unequivocal evidence that oxytocin induces LH release in vivo, but the manifestation of oxytocin activity is dependent upon conditions of exposure. Journal of Endocrinology (1990) 125, 425–432


1994 ◽  
Vol 143 (1) ◽  
pp. 33-44 ◽  
Author(s):  
P A Fowler ◽  
M Fraser ◽  
P Cunningham ◽  
P G Knight ◽  
B Byrne ◽  
...  

Abstract Ovine and rat pituitary bioassays for gonadotrophin surgeattenuating factor (GnSAF) were utilized to determine whether the level of GnSAF bioactivity in pooled human follicular fluid (hFF) from superovulated women varied according to follicle diameter (≤11 mm, 12–15 mm and 16–21 mm follicles examined using the ovine bioassay, or ≤10 mm, 11–13 mm, 14–17 mm, 18–20 mm, 21–24 mm and ≥ 25 mm follicles examined using the rat bioassay). When tested using dispersed ovine pituitary cells, GnSAF bioactivity, expressed in terms of the reduction in gonadotrophin-releasing hormone (GnRH)-induced LH secretion, was inversely related to follicle diameter (P<0·01). In response to 5 μl hFF/well from follicles of ≤ 11, 12–15 and 16–21 mm diameter, GnRH-induced LH secretion was reduced to 40·5±6·6.9%, 65·2±6·6% and 83·7±7·9% of control respectively. A similar inverse relationship was observed when a second batch of hFF samples from different sized follicles was tested using rat pituitary cell monolayers. Expressing GnSAF bioactivity in terms of the dose required to suppress GnRH-induced LH secretion by rat pituitary cells to 50% of the maximal suppression observed (ED50), the three smallest follicle size pools contained the most GnSAF (ED50 values of 0·13, 2·79 and 5·36 μl hFF/well from follicles of ≤ 10, 11–13 and 14–17 mm respectively). The ED50 values for follicles of 18–20, 21–24 and ≥25 mm were 8·81, 27·1 and 60·0 μl hFF/well respectively. Thus hFF from follicles ≤ 11 mm was over 450 times more potent than hFF from follicles ≥ 25 mm in suppressing GnRH-induced LH release. The ED50 values for inhibin bioactivity (measured as the suppression of basal FSH secretion from rat pituitary monolayers) were much less variable than those for GnSAF bioactivity (between 0·85 and 0·13 μl hFF/well). Inhibin immunoreactivity, measured by a two-site immunoradiometric assay, followed the same pattern as inhibin bioactivity with lowest concentrations in the smallest follicles (41·96 ng/ml) and highest concentrations in the three largest follicle size groups (56·48–64·48 ng/ml). The specific effects of inhibin on GnRH-induced LH and basal FSH release in these pituitary bioassays were determined by incubating culture dishes with pure recombinant human inhibin at doses of 0·025–25 ng/well. In both the sheep and rat pituitary monolayers, basal FSH was suppressed (ED50=0·02 and 0·16 ng/well respectively). However, while inhibin markedly stimulated GnRH-induced LH secretion from ovine pituitary monolayers (ED50=0·04 ng/well), it suppressed GnRH-induced LH secretion from rat pituitary monolayers (ED50=0·31 ng/well) by 13%. The divergent effects of inhibin on GnRH-induced LH secretion in the two culture systems, and the relative insensitivity of GnRH-induced LH secretion to recombinant human inhibin in the rat system, indicates that the inverse relationship between GnSAF concentrations and follicular diameter cannot be an artefact of inhibin bioactivity. In addition, when hFF was fractionated by hydrophobic interaction chromatography using phenyl Sepharose, fractions which contained the greatest amounts of GnSAF bioactivity differed from those which contained peak levels of bioactive or immunoreactive inhibin. These results support in vivo observations that small follicles are important regulators of gonadotrophin secretion in superovulated women. Concentrations of GnSAF fall as the follicles approach an ovulatory size which enables positive steroid feedback on pituitary responses to hypothalamic GnRH, leading to the preovulatory LH surge. Journal of Endocrinology (1994) 143, 33–44


1989 ◽  
Vol 121 (3) ◽  
pp. 451-458 ◽  
Author(s):  
M. C. d'Emden ◽  
J. D. Wark

ABSTRACT The hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to selectively enhance agonist-induced TSH release in the rat thyrotroph in vitro. The interaction of 1,25-(OH)2D3 with tri-iodothyronine (T3) and cortisol was studied in primary cultures of dispersed anterior pituitary cells. TRH (1 nmol/l)-induced TSH release over 1 h was enhanced by 70% (P<0·01) following exposure to 10 nmol 1,25-(OH)2D3/l for 24 h. Pretreatment with T3 (1 pmol/l–1 μmol/l) for 24 h caused a dose-dependent inhibition of TRH-induced TSH release. Net TRH-induced TSH release was inhibited by 85% at T3 concentrations of 3 nmol/l or greater. Co-incubation with 1,25-(OH)2D3 resulted in enhanced TRH-induced TSH release at all T3 concentrations tested (P<0·001). The increment of TRH-induced TSH release resulting from 1,25-(OH)2D3 pretreatment was equivalent in the presence or absence of maximal inhibitory T3 concentrations. At 1 nmol T3/1, there was a two- to threefold relative increase in 1,25-(OH)2D3-enhanced TRH-induced TSH release. Incubation with cortisol (100 pmol/l–100 nmol/l) had no effect on basal or TRH-induced TSH release, nor did it alter 1,25-(OH)2D3-enhanced TRH-induced TSH release when added 24 h before, or at the time of addition of 1,25-(OH)2D3. Actinomycin D and α-amanitin abolished 1,25-(OH)2D3-enhanced TSH secretion. These data demonstrate that the action of 1,25-(OH)2D3 in the thyrotroph required new RNA transcription, and was not affected by cortisol. In the presence of T3, the response of the thyrotroph to TRH induced by 1,25-(OH)2D3 was increased. We have shown that 1,25-(OH)2D3 has significant effects on the action of TRH and T3 in vitro. These findings support the proposal that 1,25-(OH)2D3 may modulate TSH secretion in vivo. Journal of Endocrinology (1989) 121, 451–458


1990 ◽  
Vol 126 (2) ◽  
pp. 203-209 ◽  
Author(s):  
J. M. Burrin ◽  
G. R. Hart

ABSTRACT The 21-amino steroid U74006F is a potent inhibitor of lipid peroxidation and has been shown to affect beneficially the acutely injured central nervous system. Therapeutically, it is desirable for this compound to be devoid of steroid side-effects. We have demonstrated a significant (P < 0·001) inhibition of basal ACTH secretion from cultured rat pituitary cells during a 24-h incubation at concentrations (10–100 μmol/l) previously demonstrated to inhibit lipid peroxidation in vitro. U74006F also inhibited corticotrophin-releasing factor (CRF)-stimulated ACTH secretion significantly and the combination of dexamethasone and U74006F completely blocked CRF-41-stimulated ACTH secretion. Administration of U74006F in vivo (30 mg/kg, orally, every 6 h for 30 h) had no effect on ACTH levels in normal rats (84±38 vs 45±6 ng/l in control animals) but increased ACTH levels in adrenalectomized rats (1330±295 vs 464±79 ng/l in control animals, P < 0·02). This increase in ACTH was not observed when adrenalectomized animals were maintained on the same regime of U74006F for 5 days. Our data suggest that U74006F is capable of exerting inhibitory effects on ACTH secretion in vitro. In vivo, effects on ACTH secretion were stimulatory rather than inhibitory and only occurred short-term in adrenalectomized animals or chronically in adrenalectomized rats maintained on dexamethasone. No effects on the pituitary-adrenocortical axis were seen following short-term or chronic administration of U74006F in normal rats. Journal of Endocrinology (1990) 126, 203–209


1989 ◽  
Vol 122 (2) ◽  
pp. 489-494 ◽  
Author(s):  
G. R. Hart ◽  
C. Proby ◽  
G. Dedhia ◽  
T. H. Yeo ◽  
G. F. Joplin ◽  
...  

ABSTRACT Acute and chronic hypopituitarism is associated with severe envenoming by the Burmese Russell's viper. We have demonstrated that in vitro, Burmese Russell's viper venom (0·1–10 μg/ml) causes a dose-dependent release of GH, TSH and ACTH from dispersed rat anterior pituitary cells in culture. At 10 μg/ml, venom causes a significant increase in the release of GH (344%, P<0·001), TSH (168%, P<0·005) and ACTH (>700%, P<0·001). We have also shown that the component (or components) responsible for this stimulatory effect is stable to heat (60 °C, 1 h) and mild trypsinization. Repeated addition of venom (1 μg/ml) to pituitary cells in a perifusion column system demonstrated attenuation of GH release. This reduced response was not due to depletion of the GH pool since the pituitary cells were subsequently able to respond to both GH-releasing factor (GRF) stimulation and KCl depolarization. Somatostatin in a dose which abolished GRF-stimulated GH release failed to affect venom-stimulated GH release, implying that venom acts in a cyclic AMP-independent manner. We conclude that Burmese Russell's viper venom has direct effects on pituitary hormone release in vitro. Whether these effects contribute to its known actions in vivo on the function of the pituitary remains to be established. Journal of Endocrinology (1989) 122, 489–494


1986 ◽  
Vol 109 (3) ◽  
pp. 411-418 ◽  
Author(s):  
A. M. Ultee-van Gessel ◽  
F. G. Leemborg ◽  
F. H. de Jong ◽  
H. J. van der Molen

ABSTRACT The influence of in-vitro conditions on the production of inhibin by Sertoli cells from 21-day-old normal and prenatally irradiated rat testes was studied by measuring inhibin activity in culture media, using the suppression of the release of FSH from cultured rat pituitary cells. Sertoli cells secreted inhibin-like activity during at least 21 days of culture, and cells cultured at 37 °C produced significantly more inhibin than those cultured at 32 °C. The presence of fetal calf serum had no significant effect on inhibin production at 32 °C, while at 37 °C the production was decreased. The presence of ovine FSH stimulated inhibin secretion, while inhibin concentrations in Sertoli cell culture media were decreased after the addition of testosterone. Testosterone, added together with ovine FSH, suppressed inhibin secretion when compared with the levels found in the presence of FSH alone. The presence of spermatogenic cells decreased the release of inhibin. From these results it was concluded that both Sertoli cells isolated from normal immature rat testes and those from testes without spermatogenic cells can secrete inhibin-like activity in culture. A number of discrepancies with in-vivo observations was observed. Therefore, it is likely that the in-vivo situation is too complicated for direct study of the regulation of inhibin production, because of mutual interactions between the testicular compartments. J. Endocr. (1986) 109, 411–418


1990 ◽  
Vol 127 (2) ◽  
pp. 191-196 ◽  
Author(s):  
M. T. Bluet-Pajot ◽  
F. Mounier ◽  
D. Durand ◽  
C. Kordon

ABSTRACT The effects of dopamine on GH release were investigated both in vivo in freely moving intact rats and in rats with a mediobasal hypothalamic lesion, and in vitro in a perifusion system using dispersed male rat pituitary cells kept in primary culture. In vivo, dopamine (5 mg/kg body weight) induced a rapid and very transient increase in plasma GH levels in lesioned but not in intact rats. This increase was markedly inhibited by a prior injection of the D1 antagonist SCH 23390 (0·5 mg/kg) but not of the D2 antagonist domperidone (0·5 mg/kg). The D, agonist SKF 38393 induced a dose-dependent stimulation of GH release in lesioned rats, and the effect obtained with a dose of 5 mg/kg was abolished by pretreatment with SCH 23390 (0·5 mg/kg). In vitro, dopamine (0·1 μmol/l) and SKF 38393 (0·1 μmol/l) provoked a rapid and reversible release of GH from superfused rat pituitary cells; this effect was markedly inhibited by simultaneous superfusion of SCH 23390 (1 μmol/l). These findings indicate that dopamine can stimulate basal GH release at the pituitary level and that this stimulation is mediated by D1 but not by D2 receptors. They also support the hypothesis that unidentified hypothalamic neurohormones may modulate this effect. Journal of Endocrinology (1990) 127, 191–196


1974 ◽  
Vol 77 (1_Suppl) ◽  
pp. S162
Author(s):  
H. L. Fehm ◽  
K. H. Voigt ◽  
R. Lang ◽  
M. Schleyer ◽  
E. F. Pfeiffer

Sign in / Sign up

Export Citation Format

Share Document