Differential regulation of granulocyte-macrophage colony-stimulating factor mRNA and protein expression in human thyrocytes and thyroid-derived fibroblasts by interleukin-1α and tumour necrosis factor-α

1996 ◽  
Vol 151 (2) ◽  
pp. 277-285 ◽  
Author(s):  
G Aust ◽  
A Hofmann ◽  
S Laue ◽  
S Ode-Hakim ◽  
W A Scherbaum

Abstract In this study, we provide the first report on the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by human thyroid epithelial cells. Primary cultures of highly purified thyrocytes and thyroid-derived fibroblasts (n=3) and three thyroid anaplastic and one largely papillary carcinoma cell lines were exposed to different potent GM-CSF stimulators, employing interleukin 1α (Il-1α) and tumour necrosis factor-α (TNF-α). Cytokine mRNA levels were monitored by semiquantitative reverse transcriptase-PCR including an internal heterologous competitor fragment after 3, 6 and 18 h of culture. Culture supernatants were assayed for GM-CSF using a highly sensitive ELISA (detection limit ≤ 0·5 pg/ml) after 24 h. Basal GM-CSF mRNA expression was higher in fibroblasts and SW 1736 cells compared with thyrocytes, C 634, 8505 C and HTh 74 cells. GM-CSF was spontaneously secreted by fibroblasts (means ± s.e.m.; 43 ± 15 pg/ml), SW 1736 (59 ± 4 pg/ml), HTh 74 (34 ± 4 pg/ml) and C 643 cells (12 ± 1 pg/ml) but not by thyrocytes and 8505 C cells. Treatment with Il-1α (10 U/ml) resulted in a marked increase of GM-CSF mRNA within 3 h and an increase or induction of protein expression in thyrocyte (2350 ± 214 pg/ml), fibroblast (5242 ± 1400 pg/ml), SW 1736 (20016 ± 280 pg/ml) and C 643 cultures (1285 ± 79 pg/ml). Stimulation with TNF-α (10 U/ml) yielded divergent results. No significant increase of GM-CSF mRNA or protein expression was found in thyrocytes although TNF-α receptor expression in these cells is well documented. Stimulation with TNF-α resulted in an increased GM-CSF production in fibroblasts (361 ± 14 pg/ml), HTh 74 (148 ± 51 pg/ml) and SW 1736 cultures (235 ± 43 pg/ml). TSH (10 mU/ml) did not stimulate GM-CSF secretion in thyrocytes and HTh 74 cells, both expressing the TSH receptor. Phorbol 12-myristate 13-acetate (10 ng/ml) enhanced GM-CSF mRNA and protein levels in all cell types investigated. Our data suggest that both thyrocytes and fibroblasts synthesize GM-CSF in response to Il-1α, but only fibroblasts respond to TNF-α with a significant increase in GM-CSF. Anaplastic thyroid carcinomas are potential GM-CSF producers. Journal of Endocrinology (1996) 151, 277–285

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Tomohiro Koga ◽  
Kaori Furukawa ◽  
Kiyoshi Migita ◽  
Shimpei Morimoto ◽  
Toshimasa Shimizu ◽  
...  

Abstract Objective To identify potential biomarkers to distinguish familial Mediterranean fever (FMF) from sepsis. Method We recruited 28 patients diagnosed with typical FMF (according to the Tel Hashomer criteria), 22 patients with sepsis, and 118 age-matched controls. Serum levels of 40 cytokines were analyzed using multi-suspension cytokine array. We performed a cluster analysis of each cytokine in the FMF and sepsis groups in order to identify specific molecular networks. Multivariate classification (random forest analysis) and logistic regression analysis were used to rank the cytokines by importance and determine specific biomarkers for distinguishing FMF from sepsis. Results Fifteen of the 40 cytokines were found to be suitable for further analysis. Levels of serum granulocyte-macrophage colony-stimulating factor (GM-CSF), fibroblast growth factor 2, vascular endothelial growth factor, macrophage inflammatory protein-1b, and interleukin-17 were significantly elevated, whereas tumor necrosis factor-α (TNF-α) was significantly lower in patients with FMF compared with those with sepsis. Cytokine clustering patterns differed between the two groups. Multivariate classification followed by logistic regression analysis revealed that measurement of both GM-CSF and TNF-α could distinguish FMF from sepsis with high accuracy (cut-off values for GM-CSF = 8.3 pg/mL; TNF-α = 16.3 pg/mL; sensitivity, 92.9%; specificity, 94.4%; accuracy, 93.4%). Conclusion Determination of GM-CSF and TNF-α levels in combination may represent a biomarker for the differential diagnosis of FMF from sepsis, based on measurement of multiple cytokines.


2010 ◽  
Vol 79 (1) ◽  
pp. 192-202 ◽  
Author(s):  
Romina Scian ◽  
Paula Barrionuevo ◽  
Guillermo H. Giambartolomei ◽  
Carlos A. Fossati ◽  
Pablo C. Baldi ◽  
...  

ABSTRACTOsteoarticular complications are common in human brucellosis, but the pathogenic mechanisms involved are largely unknown. Since matrix metalloproteinases (MMPs) are involved in joint and bone damage in inflammatory and infectious diseases, we investigated the production of MMPs by human osteoblasts and monocytes, either uponBrucella abortusinfection or upon reciprocal stimulation with factors produced by each infected cell type.B. abortusinfection of the normal human osteoblastic cell line hFOB 1.19 triggered a significant release of MMP-2, which was mediated in part by granulocyte-macrophage colony-stimulating factor (GM-CSF) acting on these same cells. Supernatants from infected osteoblasts exhibited increased levels of monocyte chemoattractant protein 1 and induced the migration of human monocytes (THP-1 cell line). Infection withB. abortusinduced a high MMP-9 secretion in monocytes, which was also induced by heat-killedB. abortusand by the Omp19 lipoprotein fromB. abortus. These effects were mediated by Toll-like receptor 2 and by the action of tumor necrosis factor alpha (TNF-α) produced by these same cells. Supernatants fromB. abortus-infected monocytes induced MMP-2 secretion in uninfected osteoblasts, and this effect was mediated by TNF-α. Similarly, supernatants from infected osteoblasts induced MMP-9 secretion in uninfected monocytes. This effect was mediated by GM-CSF, which induced TNF-α production by monocytes, which in turn induced MMP-9 in these cells. These results suggest that MMPs could be potentially involved in the tissue damage observed in osteoarticular brucellosis.


1998 ◽  
Vol 5 (3) ◽  
pp. 341-347 ◽  
Author(s):  
A. A. M. A. Baqui ◽  
Timothy F. Meiller ◽  
Jennifer J. Chon ◽  
Been-Foo Turng ◽  
William A. Falkler

ABSTRACT Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS ofP. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1β and TNF-α in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1β was not detected in untreated THP-1 cells. IL-1β production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1β production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1β-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1β mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1β transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-α production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1β and TNF-α.


Sign in / Sign up

Export Citation Format

Share Document