Application of surface free energy techniques to evaluate bitumen-aggregate bonding strength and bituminous mixture moisture sensitivity

Author(s):  
James R. A. Grenfell ◽  
Naveed Ahmad ◽  
Yawen Liu ◽  
Alex K. Apeagyei ◽  
Gordon D. Airey ◽  
...  
Author(s):  
Amit Bhasin ◽  
Dallas N. Little ◽  
Kamilla L. Vasconcelos ◽  
Eyad Masad

2018 ◽  
Vol 4 (7) ◽  
pp. 1714 ◽  
Author(s):  
Morteza Ghaffari Jajin ◽  
G. Hosein Hamedi

Moisture damage in asphaltic mixtures is defined by the loss of durability and resistance caused by the effect of moisture. The most common way to improve moisture damage in asphaltic mixtures is to use anti-strip additives. This study tended to use dry resin polymer additive to make a moisture-resistant asphaltic mixture. Two types of aggregate indicating different sensitivities against moisture were studied. In order to compare the effect of this material with other anti-strip additives, this study evaluated the effect of hydrated lime on reducing moisture damage and comparing its effect with dry resin polymer additive. The effect of these materials was evaluated by mechanical and thermodynamic concepts using indirect tensile ratio and surface free energy. The results indicated that dry resin polymer used in this study increased alkaline content and reduced acidic content of bituminous surface free energy, resulting in more adhesion between acidic aggregates which are more sensitive to resistance. It also improved bitumen-aggregate adhesion and reduced strip rate. Moreover, hydrated lime as an aggregate anti-strip agent and dry resin polymer as a bituminous modifier significantly increased the resistance of warm asphalt mixtures against moisture. The results of this study show that dry resin polymer can be used as an anti-strip agent instead of hydrated lime with operational problems.


1989 ◽  
Vol 50 (24) ◽  
pp. 3527-3534 ◽  
Author(s):  
P. Oswald ◽  
F. Melo ◽  
C. Germain

2011 ◽  
Vol 2 (2) ◽  
pp. 101-105
Author(s):  
L. Fazekas ◽  
Z. S. Tiba ◽  
G. Kalácska

Abstract The lubricant storing and releasing ability of the thermally sprayed surfaces plays an essential role in the proper operation of the components. In the case of porous sprayed surfaces the lubricant storing and releasing ability depends mainly on porosity and the surface energy (adhesion susceptibility). The adhesion ability can also be expressed indirectly with an index number that is by determining the surface free energy.


1989 ◽  
Vol 54 (12) ◽  
pp. 3171-3186 ◽  
Author(s):  
Jan Kloubek

The validity of the Fowkes theory for the interaction of dispersion forces at interfaces was inspected for the system water-aliphatic hydrocarbons with 5 to 16 C atoms. The obtained results lead to the conclusion that the hydrocarbon molecules cannot lie in a parallel position or be randomly arranged on the surface but that orientation of molecules increases there the ration of CH3 to CH2 groups with respect to that in the bulk. This ratio is changed at the interface with water so that the surface free energy of the hydrocarbon, γH, rises to a higher value, γ’H, which is effective in the interaction with water molecules. Not only the orientation of molecules depends on the adjoining phase and on the temperature but also the density of hydrocarbons on the surface of the liquid phase changes. It is lower than in the bulk and at the interface with water. Moreover, the volume occupied by the CH3 group increases on the surface more than that of the CH2 group. The dispersion component of the surface free energy of water, γdW = 19.09 mJ/m2, the non-dispersion component, γnW = 53.66 mJ/m2, and the surface free energies of the CH2 and CH3 groups, γ(CH2) = 32.94 mJ/m2 and γ(CH3) = 15.87 mJ/m2, were determined at 20 °C. The dependence of these values on the temperature in the range 15-40 °C was also evaluated.


2020 ◽  
Vol 7 (12) ◽  
pp. 3869-3876
Author(s):  
Kathryn M. Peruski ◽  
Brian A. Powell

Solubility of neptunium dioxide decreases as microstructure grain size increases, likely due to decreasing surface free energy and surface area.


Sign in / Sign up

Export Citation Format

Share Document