Earth Pressures Mobilised in Dry Sand with Active Rigid Retaining Wall Movement

2021 ◽  
Vol 11 (3) ◽  
pp. 1-21
Author(s):  
C. Deng ◽  
S.K. Haigh
2021 ◽  
Vol 13 (1) ◽  
pp. 570-581
Author(s):  
Meriem F. Bouali ◽  
Mahdi O. Karkush ◽  
Mounir Bouassida

Abstract The general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and full-scale retaining walls. It is observed that the PEP varies linearly with depth for the horizontal translation, but it is nonlinear when the movement is rotational about the top of the retaining wall. When rotation is around the top of the wall, the resultant of PEP is located at a depth that varies between 0.164 and 0.259H of the wall height measured from the base of the wall, which is lesser than 1/3 of the wall height. The passive earth thrust location is highly affected by the soil–wall friction angle, especially when the friction angle of the backfill material increases. Despite the herein presented results, further experiments are recommended to assess the corresponding numerical predictions.


2013 ◽  
Vol 639-640 ◽  
pp. 682-687
Author(s):  
Qing Guang Yang ◽  
Jie Liu ◽  
Jie He ◽  
Shan Huang Luo

Considering the movement effect of translation mode,friction angle reduction coefficient and method of bevel-layer analysis,estimation of active earth pressures is deduced for cohesiveless soil retaining wall with translation mode.In order to validate the feasibility of the proposed approach,a model test for active earth pressures was conducted in laboratory;and the proposed method was used to analyze this model. Experimental and theoretical results indicate that the curve of active earth pressure increases firstly and decreases then along the depth of retaining wall with different values of s/sc,and it has a point of intersection with the curve of Coulomb active earth pressure at the depth of 0.6H,where H is the wall height. Further study indicates that the action point position of the active earth pressure is higher than 1/3 times wall height.


2010 ◽  
Vol 1 (1) ◽  
pp. 88-109
Author(s):  
B. Munwar Basha ◽  
G. L. Sivakumar

Using additional dynamic parameters in the pseudo-static method like shear wave and primary wave velocities of soil, phase change in the shear and primary waves, and soil amplification for seismic accelerations, one can benefit from another useful tool called pseudo-dynamic method to solve the problem of earth pressures. In this study, the pseudo-dynamic method is used to compute the seismic passive earth pressures on a rigid gravity retaining wall by considering both the planar failure and composite failure (log-spiral and planar) mechanisms. To validate the present formulation, passive earth pressure computed by the present method are compared with those given by other authors. Seismic passive earth pressure coefficients are provided in tabular form for different parameters. The sliding and rotational displacements are also computed and results of the comparative study showed that the assumption of planar failure mechanism for rough soil-wall interfaces significantly overestimates passive earth pressure and underestimate the sliding and rotational displacements.


Retaining walls are structures used not only to retain earth but also water and other materials such as coal, ore, etc. where conditions do not permit the mass to assume its natural slope. In this chapter, after considering the types of retaining wall, earth pressure theories are developed in estimating the lateral pressure exerted by the soil on a retaining structure for at-rest, active, and passive cases. The effect of sloping backfill, wall friction, surcharge load, point loads, line loads, and strip loads are analyzed. Karl Culmann's graphical method can be used for determining both active and passive earth pressures. The analysis of braced excavations, sheet piles, and anchored sheet pile walls are considered and practical considerations in the design of retaining walls are treated. They include saturated backfill, wall friction, stability both external and internal, bearing capacity, and proportioning the dimensions of the retaining wall. Finally, a brief treatment of earth pressure on underground structures is included.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Hua Wen ◽  
Jiu-jiang Wu ◽  
Jiao-li Zou ◽  
Xin Luo ◽  
Min Zhang ◽  
...  

Geobag retaining wall using construction waste is a new flexible supporting structure, and the usage of construction waste to fill geobags can facilitate the construction recycling. In this paper, model tests were performed on geobag retaining wall using construction waste. The investigation was concentrated on the slope top settlement, the distribution characteristics of the earth pressures on retaining walls and horizontal wall displacements, and slope failure modes. The results indicated that the ultimate loads that the slope tops with retaining walls could bear were 87.5%~125% higher than that of the slope top without retaining walls. The ultimate loading of strengthened slopes with different slope ratios from 1 : 0.75 to 1 : 0.25 could be reduced by 11.8% to 29.4%. The horizontal displacements of the retaining walls constructed from geobags were distributed in a drum shape, with the greatest horizontal displacements occurring about 1/3~1/2 of the wall height away from the bottom of the wall. As the slope ratio increased, the failure of the slope soil supported by geobag retaining wall using construction waste changed from sliding to sliding-toppling (dominated by sliding) and then to toppling-sliding (dominated by toppling). The range of 1/3~1/2 of wall height is the weak part of the retaining walls, which should be strengthened with certain measures during the process of design and construction.


2020 ◽  
Vol 30 (3) ◽  
pp. 214-233
Author(s):  
Fatima Zohra Benamara ◽  
Ammar Rouaiguia ◽  
Messaouda Bencheikh

Abstract Anchored retaining walls are structures designed to support different loading applied in static and dynamic cases. The purpose of this work is to design and study the stability of an anchored retaining wall loaded with different seismic actions to obtain minimal anchor lengths. Mononobe-Okabe theory has been applied for the evaluation of seismic earth pressures developed behind the anchored wall. Checking the dynamic stability of anchored retaining walls is usually done using the classic Kranz model. To take into consideration the effects of the internal forces developed during failure, we have proposed a new model, based on the Kranz model, which will be used as the Kranz model to find the critical angle failure performed iteratively until the required horizontal anchor length is reached for a minimum safety factor. The results of this study confirm that the effect of the seismic load on the design of an anchored retaining wall, and its stability, has a considerable influence on the estimation of anchor lengths. To validate the modifications made to the new model, a numerical analysis was carried out using the Plaxis 2D software. The interpretation of the obtained results may provide more detailed explanation on the effect of seismic intensities for the design of anchored retaining walls.


Sign in / Sign up

Export Citation Format

Share Document