Analytical and numerical investigation of site response due to vertical ground motion

Géotechnique ◽  
2018 ◽  
Vol 68 (6) ◽  
pp. 467-480 ◽  
Author(s):  
B. Han ◽  
L. Zdravković ◽  
S. Kontoe
2017 ◽  
Vol 33 (2) ◽  
pp. 499-528 ◽  
Author(s):  
Zeynep Gülerce ◽  
Ronnie Kamai ◽  
Norman A. Abrahamson ◽  
Walter J. Silva

Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0–8.0, distances of 0–300 km, and spectral periods of 0–10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and site amplification scaling between California, Japan, China, Taiwan, Italy, and the Middle East are included. Scaling for the hanging-wall effect is incorporated using the constraints from numerical simulations by Donahue and Abrahamson (2014) . The standard deviation is magnitude dependent with smaller magnitudes leading to larger standard deviations at short periods but smaller standard deviations at long periods. The vertical ground motion model developed in this study can be paired with the horizontal component model proposed by Abrahamson et al. (2014) to produce a V/H ratio. For applications where the horizontal spectrum is derived from the weighted average of several horizontal ground motion models, a V/H model derived directly from the V/H data (such as Gülerce and Abrahamson 2011 ) should be preferred.


2020 ◽  
Author(s):  
Janneke van Ginkel ◽  
Elmer Ruigrok ◽  
Rien Herber

<p>Up to now, almost all of the ground motion modeling and hazard assessment for seismicity in the Netherlands focuses on horizontal motion. As a rule of thumb, the strength of vertical ground motions is taken as 2/3 of that of horizontal ground motions. In reality of course, amplifications and V/H ratios are site-dependent and thus vary regionally.  Recent studies have indeed shown that vertical ground motion is not always simply 2/3 of the horizontal motion. However, these studies are performed in areas with high magnitude (Mw>5.0) earthquakes and the question is whether vertical motion is relevant to be included in seismic hazard assessment for low magnitude earthquakes (to date, max Mw=3.6 in Groningen).</p><p>In the Netherlands, the top part of the soils is practically always unconsolidated, so the elastic waves generated by deeper (~3000m) seated earthquakes will be subject to transformation when arriving in these layers. Recordings over a range of depth levels in the Groningen borehole network show the largest amplification to occur in the upper 50 meters of the sedimentary cover. We not only observe a strong amplification from shear waves on the horizontal components, but also from longitudinal waves on the vertical component. A better understanding of vertical motion of low magnitude earthquakes aims to support the design of re-enforcement measures for buildings in areas affected by low magnitude seismicity. Furthermore, interference between the longitudinal -and shear waves might contribute to damage on structures.</p><p>This study presents observations of longitudinal wave amplification in the frequency band 1-10 Hz, corresponding to resonance periods of Dutch buildings. From 19 seismic events, with a minimum of magnitude two, we retrieved transfer functions (TFs) from the vertical component, showing a strong site response at certain locations. In addition, we calculate event V/H ratios and VH factors from the surface seismometer. These results are compared with the TFs and show a similar pattern in terms of site response. Furthermore, the sites with highest vertical amplification correspond to very low (800-900 m/s) P-wave velocities. Our study shows that vertical amplification is very site dependent. However, the question whether the vertical motion is significant enough to form a real hazard can only be answered through cooperation between seismologist and structural engineer.</p>


Sign in / Sign up

Export Citation Format

Share Document