ACCIDENTAL IMPACT LOADING OF CONCRETE STRUCTURES IN THE MARINE ENVIRONMENT

Author(s):  
T Browne ◽  
P Watry
2010 ◽  
Vol 43 (10) ◽  
pp. 1397-1412 ◽  
Author(s):  
Irina Stipanovic Oslakovic ◽  
Dubravka Bjegovic ◽  
Dunja Mikulic

2008 ◽  
Vol 399 ◽  
pp. 153-160 ◽  
Author(s):  
Katrien Audenaert ◽  
Liviu Marsavina ◽  
Geert de Schutter

Chloride initiated reinforcement corrosion is the main durability problem for concrete structures in a marine environment. If the chlorides reach the reinforcement steel, it will depassivate and start to corrode in presence of air and water. Since the corrosion products have a larger volume than the initial products, concrete stresses are induced, leading to spalling and degradation of the concrete structures. If cracks, caused by early drying, thermal effects, shrinkage movements or overstress, are present in the concrete, the penetration of chlorides is much faster compared to uncracked concrete. In this way, the corrosion process is initiated earlier and the service life is decreasing drastically. In order to study the influence of existing cracks in concrete structures on the penetration of chlorides a test program was set up at the Magnel Laboratory for Concrete Research of Ghent University, Belgium in cooperation with the “Politehnica” University of Timisoara, Romania. The first part of the test program consists of concrete specimens with artificial cracks. The chloride penetration into the concrete was realised with a non-steady state migration test and modelled with the finite element method COSMOS/FFE Thermal software. Based on the experimental and numerical results, a crack influencing factor was determined. With this factor, the resulting service life of the cracked concrete construction is determined and compared with the original service life.


2019 ◽  
Vol 18 (3) ◽  
pp. 545-553
Author(s):  
Cristiane Silva ◽  
◽  
Jesús Bernal Camacho ◽  
Júlio Bandeira ◽  
André Guimarães ◽  
...  

2020 ◽  
Vol 73 ◽  
pp. 102804 ◽  
Author(s):  
Tristan Senga Kiesse ◽  
Stéphanie Bonnet ◽  
Ouali Amiri ◽  
Anne Ventura

Sign in / Sign up

Export Citation Format

Share Document