Using remotely sensed data to support flood modelling

Author(s):  
S. Néelz ◽  
G. Pender ◽  
I. Villanueva ◽  
M. Wilson ◽  
N. G. Wright ◽  
...  
Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 39 ◽  
Author(s):  
Iguniwari Thomas Ekeu-wei ◽  
George Alan Blackburn

Flood modelling and mapping typically entail flood frequency estimation, hydrodynamic modelling and inundation mapping, which require specific datasets that are often unavailable in developing regions due to financial, logistical, technical and organizational challenges. This review discusses fluvial (river) flood modelling and mapping processes and outlines the data requirements of these techniques. This paper explores how open-access remotely sensed and other geospatial datasets can supplement ground-based data and high-resolution commercial satellite imagery in data sparse regions of developing countries. The merits, demerits and uncertainties associated with the application of these datasets, including radar altimetry, digital elevation models, optical and radar images, are discussed. Nigeria, located within the Niger river basin of West Africa is a typical data-sparse country, and it is used as a case study in this review to evaluate the significance of open-access datasets for local and transboundary flood analysis. Hence, this review highlights the vital contribution that open access remotely sensed data can make to flood modelling and mapping and to support flood management strategies in developing regions.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2019 ◽  
Vol 11 (3) ◽  
pp. 284 ◽  
Author(s):  
Linglin Zeng ◽  
Shun Hu ◽  
Daxiang Xiang ◽  
Xiang Zhang ◽  
Deren Li ◽  
...  

Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area.


1986 ◽  
Vol 20 (1) ◽  
pp. 31-41 ◽  
Author(s):  
P.J. Curran ◽  
H.D. Williamson

Sign in / Sign up

Export Citation Format

Share Document