Modeling exchange rate volatility in the gambia using dynamic conditonal correlaton model
The relationship between different international stock markets is of importance for both financial practitioners and academicians in order to manage risks. Especially after the financial crisis, the pronounced financial contagion draws the public attention to look into such associations. However, measuring and modelling dependence structure becomes complicated when asset returns present non-linear, non-Gaussian and dynamic features. This paper examines the time-varying conditional correlations to the weekly exchange rate returns for the USD, EURO and GBP against the Gambian Dalasi (GMD) during the period 2000 to 2017. We use a dynamic conditional correlation (DCC) multivariate GARCH model. This model can be simplified by estimating univariate GARCH models for each return series, and then, using transformed residuals resulting from the first stage, estimating a conditional correlation estimator. DCC-GARCH model was implemented for two different assumptions of the error distribution; assuming Gaussian and Student t-distribution. Empirical results show substantial evidence of significant increase in conditional correlation. It is also clean that, the Student t-distributed errors better forecast the conditional correlation.