scholarly journals CONVEXITY PROPERTIES FOR A NEW INTEGRAL OPERATOR

2017 ◽  
Vol 51 ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Ben Wongsaijai ◽  
Nattakorn Sukantamala

We introduce a new form of generalized integral operator defined on the class of analytic functionsA0. By making use of this novel integral operator, we give the convexity of other integral operators. We also briefly indicate the relevant connections of our presented results to the formerly reported results. Furthermore, other interesting properties are also discussed.


2016 ◽  
Vol 32 (1) ◽  
pp. 113-121
Author(s):  
ADRIANA OPREA ◽  
◽  
DANIEL BREAZ ◽  

For certain classes of analytic functions in the open unit disk U, we study some convexity properties for a new general integral operator. Several corollaries of the main results are also considered.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


Filomat ◽  
2014 ◽  
Vol 28 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Erhan Deniz

In this paper the author introduces a general integral operator and determines conditions for the univalence of this integral operator. Also, the significant relationships and relevance with other results are also given.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 310 ◽  
Author(s):  
Pedro Ortiz ◽  
Juan Carlos Trillo

This paper is devoted to introducing a nonlinear reconstruction operator, the piecewise polynomial harmonic (PPH), on nonuniform grids. We define this operator and we study its main properties, such as its reproduction of second-degree polynomials, approximation order, and conditions for convexity preservation. In particular, for σ quasi-uniform grids with σ≤4, we get a quasi C3 reconstruction that maintains the convexity properties of the initial data. We give some numerical experiments regarding the approximation order and the convexity preservation.


Author(s):  
Ferit Gürbüz ◽  
Shenghu Ding ◽  
Huili Han ◽  
Pinhong Long

AbstractIn this paper, applying the properties of variable exponent analysis and rough kernel, we study the mapping properties of rough singular integral operators. Then, we show the boundedness of rough Calderón–Zygmund type singular integral operator, rough Hardy–Littlewood maximal operator, as well as the corresponding commutators in variable exponent vanishing generalized Morrey spaces on bounded sets. In fact, the results above are generalizations of some known results on an operator basis.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
B. A. Frasin ◽  
Ibtisam Aldawish

The main object of this paper is to find necessary and sufficient conditions for generalized Bessel functions of first kind zup(z) to be in the classes SPp(α,β) and UCSP(α,β) of uniformly spiral-like functions and also give necessary and sufficient conditions for z(2-up(z)) to be in the above classes. Furthermore, we give necessary and sufficient conditions for I(κ,c)f to be in UCSPT(α,β) provided that the function f is in the class Rτ(A,B). Finally, we give conditions for the integral operator G(κ,c,z)=∫0z(2-up(t))dt to be in the class UCSPT(α,β). Several corollaries and consequences of the main results are also considered.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


Sign in / Sign up

Export Citation Format

Share Document