scholarly journals Characterization of The Heat Transfer on Spray Quenching for Different Material Properties

2021 ◽  
Vol 47 (3) ◽  
pp. 153
Author(s):  
S Sabariman ◽  
E. Specht
2018 ◽  
Author(s):  
Surendra D. Barewar ◽  
Sandesh S. Chougule ◽  
J. Jadhav ◽  
S. Biswas

2021 ◽  
Author(s):  
Jorge Castro Maldonado ◽  
James A. Threadgill ◽  
Stuart A. Craig ◽  
Jesse C. Little ◽  
Stefan H. Wernz

2021 ◽  
Vol 1034 (1) ◽  
pp. 012045
Author(s):  
Herry Irawansyah ◽  
Abdul Ghofur ◽  
Rachmat Subagyo ◽  
Mastiadi Tamjidillah ◽  
Bagus Harits Pratama ◽  
...  

2020 ◽  
Vol 1683 ◽  
pp. 032043
Author(s):  
I A Molotova ◽  
A R Zabirov ◽  
V V Yagov ◽  
M M Vinogradov ◽  
I A Belyaev

Ultrasonics ◽  
2021 ◽  
Vol 114 ◽  
pp. 106366
Author(s):  
Korpong Viriyananon ◽  
Jirachai Mingbunjerdsuk ◽  
Teerapat Thungthong ◽  
Weerachai Chaiworapuek

2021 ◽  
Vol 63 (4) ◽  
pp. 341-349
Author(s):  
Mete Onur Kaman ◽  
Nevin Celik ◽  
Resul Das

Abstract In present the study, sudden cooling, in other words thermal shock, is applied to a plate that is originally a functionally graded material (FGM). The flat plate is assumed to have an edge crack on it. Hence a numerical couple-field analysis is performed on the plate. The FGM is a combination of Ni and Al2O3. The thermal and mechanical properties of the FGM are assumed to depend on temperature variation. The mixing percentages of the Ni and Al2O3 throughout the plate are considered to vary (i) linearly, (ii) quadratically and (iii) in half-order. In order to solve the problem, a new subroutine depending on temperature is written using APDL (ANSYS Parametric Design Language) codes. Three values of the heat transfer coefficient are applied to the initially heated plate. As a result, the transient temperature variation and stress intensity factor are presented to show the thermo-mechanical relation of the plate. The material properties changing with temperature results in more reliable temperature values. Increasing the heat transfer coefficient results in better cooling and in a lesser amount of time to reach ambient air temperature.


2021 ◽  
Author(s):  
Y. H. Park ◽  
J. Dana

Abstract Anisotropic composite materials have been extensively utilized in mechanical, automotive, aerospace and other engineering areas due to high strength-to-weight ratio, superb corrosion resistance, and exceptional thermal performance. As the use of composite materials increases, determination of material properties, mechanical analysis and failure of the structure become important for the design of composite structure. In particular, the fatigue failure is important to ensure that structures can survive in harsh environmental conditions. Despite technical advances, fatigue failure and the monitoring and prediction of component life remain major problems. In general, cyclic loadings cause the accumulation of micro-damage in the structure and material properties degrade as the number of loading cycles increases. Repeated subfailure loading cycles cause eventual fatigue failure as the material strength and stiffness fall below the applied stress level. Hence, the stiffness degradation measurement can be a good indication for damage evaluation. The elastic characterization of composite material using mechanical testing, however, is complex, destructive, and not all the elastic constants can be determined. In this work, an in-situ method to non-destructively determine the elastic constants will be studied based on the time of flight measurement of ultrasonic waves. This method will be validated on an isotropic metal sheet and a transversely isotropic composite plate.


Sign in / Sign up

Export Citation Format

Share Document