scholarly journals Effect of Collimator Elements on the Beam Spectrum and KERMA In Gamma Irradiator

2021 ◽  
Vol 24 (2) ◽  
pp. 67
Author(s):  
Rasito Tursinah ◽  
Bunawas Bunawas ◽  
Tri Cahyo ◽  
Ade Suherman ◽  
P Sukmabuana

In the development of low-medium energy photon calibration facilities we have simulated several types of gamma irradiator collimator materials with ISO 4037-1 design connected to the output beam spectrum and the resulting kerma. Four types of collimator material, namely Al, Fe, Pb, and WCu have been simulated with gamma radiation sources 241Am, 57Co, 137Cs, and 60Co. Simulations were carried out using the Monte Carlo method with the PHITS computer program. Based on the comparison of air kerma produced, collimators made from Al are suitable for gamma sources 241Am, Fe material for gamma sources 57Co, and Pb material for sources 137Cs and 60Co.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
J. H. Lee ◽  
J. N. Wang ◽  
T. T. Huang ◽  
S. H. Su ◽  
B. J. Chang ◽  
...  

The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR)192Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the192Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR192Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR192Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.


2019 ◽  
pp. 69-74
Author(s):  
V.G. Rudychev ◽  
N.A. Azarenkov ◽  
I.O. Girka ◽  
D.V. Rudychev ◽  
Y.V. Rudychev

A technique to reduce the dose rates, produced by large-sized ground-based radiation sources with dozens of radiating elements of the same geometry arranged along the perimeter, is developed. The radiating elements represent the concrete rectangular casks into which cylindrical barrels filled with compacted RW are loaded. The spatial distribution of the radiation around the cask is calculated by the Monte Carlo method. The radiation is assumed to be produced by the definite radionuclides of RW. Shielding by neighboring containers and the presence of an additional biological shielding are taken into account. Different options of the container arrangement are considered.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


Author(s):  
V.A. Mironov ◽  
S.A. Peretokin ◽  
K.V. Simonov

The article is a continuation of the software research to perform probabilistic seismic hazard analysis (PSHA) as one of the main stages in engineering seismic surveys. The article provides an overview of modern software for PSHA based on the Monte Carlo method, describes in detail the work of foreign programs OpenQuake Engine and EqHaz. A test calculation of seismic hazard was carried out to compare the functionality of domestic and foreign software.


2019 ◽  
Vol 20 (12) ◽  
pp. 1151-1157 ◽  
Author(s):  
Alla P. Toropova ◽  
Andrey A. Toropov

Prediction of physicochemical and biochemical behavior of peptides is an important and attractive task of the modern natural sciences, since these substances have a key role in life processes. The Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers); (ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii) development of databases on the biopolymers. Current ideas related to application of the Monte Carlo technique for studying peptides and biopolymers have been discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document