Forecasting Coconut Yield: A Comparative Study between the Use of Traditional Forecasting and Feed Forward Back Propagation Artificial Neural Network

10.17158/320 ◽  
2014 ◽  
Vol 18 (2) ◽  
Author(s):  
Eric John G. Emberda ◽  
Den Ryan L. Dumas ◽  
Timothy Pierce M. Rentillo

<p>This study compared the use of Linear Regression and Feed Forward Backpropagation Artificial Neural Network (ANN) in forecasting the coconut yield and copra yield of a selected area in Davao region. Raw data were gathered from the Philippine Coconut Authority, Davao Research Center. An ANN model was created and tested repeatedly to the best combination of nodes. Accuracy of the forecast between the two methods was compared by looking at the mean square error and the standard error for variable x and y. Results showed that the use of Feed Forward Back Propagation Artificial Neural Network gives better accuracy of the forecast data.</p>

Author(s):  
Shreeniket Trivedi ◽  

The solar power generation (renewable energy) is the cleanest form of energy generation method and the solar power plant has a very long life and also is maintenance-free, but due to the high unpredictability of the generated solar power due to dynamically changing environmental factors it cannot be used as the reliable source of power. This prevents the maximum utilization of solar energy. In this project we are designing the artificial neural network model to predict the power generated depending on the various environmental factors like visibility, cloud cover (sky cover), etc. the intensity of the incident of the solar radiation decreases and thus the plant is not able to work at its rated capacity. We use Artificial Neural Network (ANN) with Feed Forward Back Propagation (FFBP) technique and predicted the percentage of the maximum plant capacity which will be generated by considering the environmental factors like temperature, pressure, distance to solar noon, day light, sky cover, visibility, humidity, wind speed, wind direction and compared our results with available data and find quite encouraging results.


Author(s):  
Geoffroy Chaussonnet ◽  
Sebastian Gepperth ◽  
Simon Holz ◽  
Rainer Koch ◽  
Hans-Jörg Bauer

Abstract A fully connected Artificial Neural Network (ANN) is used to predict the mean spray characteristics of prefilming airblast atomization. The model is trained from the planar prefilmer experiment from the PhD thesis of Gepperth (2020). The output of the ANN model are the Sauter Mean Diameter, the mean droplet axial velocity, the mean ligament length and the mean ligament deformation velocity. The training database contains 322 different operating points. Two types of model input quantities are investigated and compared. First, nine dimensional parameters are used as inputs for the model. Second, nine non-dimensional groups commonly used for liquid atomization are derived from the first set of inputs. The best architecture is determined after testing over 10000 randomly drawn ANN architectures, with up to 10 layers and up to 128 neurons per layer. The striking results is that for both types of model, the best architectures consist of only 3 hidden layer in the shape of a diabolo. This shape recalls the shape of an autoencoder, where the middle layer would be the feature space of reduced dimensionality. It was found that the model with dimensional input quantities always shows a lower test and validation errors than the one with non-dimensional input quantities. In general, the two types of models provide comparable accuracy, better than typical correlations of SMD and droplet velocity. Finally the extrapolation capability of the models was assessed by a training them on a confined domain of parameters and testing them outside this domain.


2012 ◽  
Vol 576 ◽  
pp. 91-94 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Machining of hardened steel at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality and cutting tool life. Thus, predicting the temperature in early stage becomes utmost importance. This research presents a neural network model for predicting the cutting temperature in the CNC end milling process. The Artificial Neural Network (ANN) was applied as an effective tool for modeling and predicting the cutting temperature. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the cutting temperature. The artificial neural network (ANN) was applied to predict the cutting temperature. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show a high correlation between the predicted and the observed temperature which indicates the validity of the models.


2015 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Ehsan Momeni ◽  
Ramli Nazir ◽  
Danial Jahed Armaghani ◽  
Harnedi Maizir

<p class="MsoNormal" style="text-align: justify; line-height: 200%;">Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it was found that the length and area of the piles are dominant factors in the proposed predictive model.</p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"> </p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="text-align: justify; line-height: 200%;">La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación (PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud y el área de los pilotes son factores dominantes en el modelo predictivo propuesto.</p>


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


2009 ◽  
Vol 36 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Turgay Partal

In this study, the wavelet–neural network structure that combines wavelet transform and artificial neural networks has been employed to forecast the river flows of Turkey. Discrete wavelet transforms, which are useful to obtain to the periodic components of the measured data, have significantly positive effects on artificial neural network modeling performance. Generally, the feed-forward back-propagation method was studied with respect to artificial neural network applications to water resources data. In this study, the performance of generalized neural networks and radial basis neural networks were compared with feed-forward back-propagation methods. Six different models were studied for forecasting of monthly river flows. It was seen that the wavelet and feed-forward back-propagation model was superior to the other models in terms of selected performance criteria.


Sign in / Sign up

Export Citation Format

Share Document