scholarly journals Improving voltage profile of load bus of wind generation system using DSTATCOM

2017 ◽  
Vol 26 (4) ◽  
pp. 81
Author(s):  
Manju Aggarwal ◽  
Madhusudan Singh ◽  
S.K. Gupta

In a low voltage distribution system with integrated wind plant, voltage stability is impacted by the large variation of load and wind penetration. The compensators like SVC and DSTATCOM are currently being used to address such issue of voltage instability. This paper analyses the impact of wind penetration and variation of active and reactive power of the load on voltage profile of a wind generation system with and without DSTATCOM. It also analyses the performance of the system during fault by calculating various parameters of the system. It has been demonstrated that voltage stability margin increases using DSTATCOM at different wind penetration levels. This system has been simulated and analysed in MATLAB 2011b using a power system toolbox under steady state and transient conditions.

2017 ◽  
Vol 26 (4) ◽  
pp. 81
Author(s):  
Manju Aggarwal ◽  
Madhusudan Singh ◽  
S.K. Gupta

In a low voltage distribution system with integrated wind plant, voltage stability is impacted by the large variation of load and wind penetration. The compensators like SVC and DSTATCOM are currently being used to address such issue of voltage instability. This paper analyses the impact of wind penetration and variation of active and reactive power of the load on voltage profile of a wind generation system with and without DSTATCOM. It also analyses the performance of the system during fault by calculating various parameters of the system. It has been demonstrated that voltage stability margin increases using DSTATCOM at different wind penetration levels. This system has been simulated and analysed in MATLAB 2011b using a power system toolbox under steady state and transient conditions.


Author(s):  
Manju Aggarwal ◽  
Madhusudan Singh ◽  
S. K. Gupta

<span>In this paper, fault ride through analysis of a low voltage distribution system augmented with distributed wind generation using squirrel cage induction generator and distribution static compensator (DSTATCOM) is carried out through modeling and simulation study in MATLAB. The impact of different types of unbalanced (single line to ground) fault in a low voltage distribution system in normal and severe conditions are studied and analysed in details. Analysis on system instability is also shown in case of sever fault condition. A distribution Static Compensator (DSTATCOM) is used to improve fault ride through (FRT) capability of wind generation system by compensating positive sequence voltage. A comparison of dynamic response of the system with and without DSTATCOM and effects of DSTATCOM on voltage and generator speed are presented. The simulation results shows that DSTATCOM is capable of reducing the voltage dips and improving the voltage profiles by providing reactive power support to distributed wind generation system under balanced as well as unbalanced faults condition and enhances the fault ride through capability of the wind generator</span>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sanjay Jain ◽  
Ganga Agnihotri ◽  
Shilpa Kalambe ◽  
Renuka Kamdar

This paper intends to enumerate the impact of distributed generation (DG) on distribution system in terms of active as well as reactive power loss reduction and improved voltage stability. The novelty of the method proposed in this paper is the simple and effective way of sizing and siting of DG in a distribution system by using two-port Z-bus parameters. The validity of the method is verified by comparing the results with already published methods. Comparative study presented has shown that the proposed method leads existing methods in terms of its simplicity, undemanding calculation procedures, and less computational efforts and so does the time. The method is implemented on IEEE 69-bus test radial distribution system and results show significant reduction in distribution power losses with improved voltage profile of the system. Simulation is carried out in MATLAB environment for execution of the proposed algorithm.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Varaprasad Janamala

AbstractA new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications.


The main aim of the distribution system is delivery the power to the consumers. Because of, aging of electrical infrastructure, old control mechanism, increased power demand causing exploitation of the present electrical networks leads to low voltage profile, more active and reactive power loss with various power quality related issues causing poor network operation. In this method maximization of voltage profile with energy loss minimization is carried using network reconfiguration along with optimal siting of the distributed generation (DG). The proposed methodology is carried out on five bus system. The obtained results are impressive interms of voltage stability and power loss reduction.


Appropriate placement and sizing of distributed generation is required for reducing power loss and improvement in voltage profile of power system. Solar photovoltaic (PV) and wind energy are two prominent sources of distributed generation. In this paper, the authors propose a novel method to analyze the optimal placement and sizing of the solar PV and wind generation system in a radial distribution system..A multi objective function is selected for optimal siting and sizing. A 33-bus distribution system has been considered for testing the developed algorithm. Optimal location is obtained by placing DG source at each bus and satisfying objective function. Jaya algorithm is implemented for optimal sizing of PV and wind system. Also the system has been analyzed by placing the solar PV and Wind generation system independently and then simultaneously.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1964
Author(s):  
Francisco Emilio Rodarte Gutiérrez ◽  
Oscar Carranza Castillo ◽  
Jaime José Rodríguez Rivas ◽  
Rubén Ortega González ◽  
Edgar Peralta Sánchez ◽  
...  

In this work, methods are implemented to improve two aspects of energy quality in a wind generation system. First, the harmonic reduction is achieved by applying a linear control technique in the Grid Side Converter; and second, the power factor of the wind generation system using a Doubly Fed Induction Generator (DFIG) is adjusted by injecting reactive power. The reduction of the harmonic content is performed with a digital resonant controller, which tracks the periodic signals corresponding to the current harmonics of the Grid Side Converter (GSC), which is part of a “back to back” converter in a wind generation system. This technique allows implementing a current controller of the GSC with a high level of rejection of current harmonics, of frequencies with orders (1 + 6k) and (1 − 6k) (where k is an integer), when executed in the synchronous reference frame (dq). The purpose of this work is to inject currents to the grid with very low harmonic distortion and provide a method for tuning the resonant controller for a simple L filter; also, the GSC is used to generate reactive power. These two improvements achieve a unity power factor, and this is necessary to comply with the new codes where a leading power factor helps regulate the grid voltage.


Distributed generation system penetration in the existing distribution system is done for minimizing the losses and improving the voltage profile. There are total five types of distributed generation systems exist based on their power delivery like distributed generation system injecting real and reactive power, supplying real power only, supplying reactive power only, absorbing reactive power only , supplying real power and absorbing reactive power. All these five types of distributed generation systems have different penetration effects on the radial distribution system. We get different voltage profiles and power losses for different types of distributed generation systems. The testing of these five types of distributed generation systems will be done on IEEE 33 bus radial distribution system. For computing, the line parameters and power losses of the above testing system the forward-backward sweep load flow method will be applied


Sign in / Sign up

Export Citation Format

Share Document