scholarly journals Development of an effective accumulator battery with a voltage inverter in the electric energy storage unit

Author(s):  
Aleksey Udovichenko ◽  
◽  
Vadim Tokarev ◽  
Evgeny Grishanov ◽  
Sergey Kuchak ◽  
...  

The article proposes a matching device between an accumulator battery and a voltage inverter in electric energy storage systems based on a reversible DC-DC converter with improved weight, size and cost indicators. Lithium-ion batteries are subject to tough operational requirements. The discharge of such batteries is not recommended to exceed their three-fold capacity (C), while the charge is limited to 0.5C, and low-frequency ripple components should not be present in the charging current. These requirements can be fulfilled with the help of the proposed matching device which is characterized by smaller dimensions and cost achieved due to the choke unit. The article proposes the calculation of the converter circuit and presents the simulation results obtained in the Psim simulation environment (the PowerSim environment). An economic assessment of the converter has been carried out.


2020 ◽  
Vol 2 (4) ◽  
pp. 219-230
Author(s):  
P. A. Khlyupin

Introduction: there is much concern about power supply to small and remote villages and industrial facilities, such as crude oil and gas fields, in the present-day power industry. Systems using renewable energy sources are the most innovative solutions to this problem. The need for electric energy storage units complicates the use of renewable energy sources. Versatile types of storage units, working on different principles, are in use now. Flywheels, working on the principle of mechanical accumulation of energy, are of particular interest.Methods: both traditional and advanced designs of electric energy accumulation systems are analyzed in the article. Recent advancements in machine building, power engineering and structural materials are contributed into structural elements of an electric energy accumulation system.Results and discussion: basic strengths and weaknesses of electric energy storage units were identified in the course of the analysis. The author substantiated the need for new effective electric energy storage units working on the principle of mechanical accumulation of potential and kinetic energy. The conclusion is that advanced engineering solutions, such as flywheels and energy efficient reversible electric machines, can boost the efficiency of electric power storage systems. The solution underlying the design of an energy efficient storage unit is offered to electric power industry players.Conclusion: the storage unit under development has flywheels and energy efficient reversible electric machines. It improves the energy efficiency of both classical power generation systems and those using renewable energy sources.



Author(s):  
Olivier Dumont ◽  
Carolina Carmo ◽  
Emelines Georges ◽  
Sylvain Quoilin ◽  
Vincent Lemort


2019 ◽  
Vol 9 (12) ◽  
pp. 2523 ◽  
Author(s):  
Yu ◽  
Zhang ◽  
Liu

In order to improve the power quality and the fault ride-through capability of islanded forest microgrids, a hybrid complementary energy storage control method is proposed. In this method, mode-based sectional coordinated control is adopted as the basic control scheme, whereas control of the hybrid energy storage, which includes the battery, the supercapacitor, and the wind turbine, utilizes the improved strategy. According to the characteristics of the energy storage units, adaptive control of batteries and supercapacitors are adopted to smooth the low-frequency power fluctuation in the long-term and to suppress the high-frequency component separately, in which predictive control of the converters is utilized to achieve rapid regulation. Furthermore, as a third energy storage unit, the wind power unit was investigated, utilizing the large rotating kinetic energy of the wind turbine to temporally suppress huge power disturbance and avoid load shedding. To verify the effectiveness of the proposed coordination control with hybrid complementary energy storage, simulations of the islanded DC microgrid in forest area were conducted in MATLAB/Simulink, with the results showing that, by utilizing the improved control method, the transient operation characteristics of the system were effectively enhanced.



Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 638
Author(s):  
Yiqun Liu ◽  
Y. Gene Liao ◽  
Ming-Chia Lai

Modelling, simulation, and validation of the 12-volt battery pack using a 20 Ah lithium–nickel–manganese–cobalt–oxide cell is presented in this paper. The cell characteristics influenced by thermal effects are also considered in the modelling. The parameters normalized directly from a single cell experiment are foundations of the model. This approach provides a systematic integration of actual cell monitoring with a module model that contains four cells connected in series. The validated battery module model then is utilized to form a high fidelity 80 Ah 12-volt battery pack with 14.4 V nominal voltage. The battery cell thermal effectiveness and battery module management system functions are constructed in the MATLAB/Simulink platform. The experimental tests are carried out in an industry-scale setup with cycler unit, temperature control chamber, and computer-controlled software for battery testing. As the 12-volt lithium-ion battery packs might be ready for mainstream adoption in automotive starting–lighting–ignition (SLI), stop–start engine idling elimination, and stationary energy storage applications, this paper investigates the influence of ambient temperature and charging/discharging currents on the battery performance in terms of discharging voltage and usable capacity. The proposed simulation model provides design guidelines for lithium-ion polymer batteries in electrified vehicles and stationary electric energy storage applications.



2021 ◽  
Vol 33 ◽  
pp. 102124
Author(s):  
Song-Zhen Tang ◽  
He-Qing Tian ◽  
Jun-Jie Zhou ◽  
Hang Li




Sign in / Sign up

Export Citation Format

Share Document