Variant of Reduction the Complexity of the Control System of the Asynchronous Electric Drive

Author(s):  
Evgeny Eshchin ◽  
Author(s):  
Igor' Polyuschenkov

The materials on the development of asynchronous electric drive with scalar control are given. The technical solutions associated with the design of software and hardware parts of the microprocessor control system are described. When developed, tools of model-based programming technique are used.


Author(s):  
Evgeniia Burdilna ◽  
Sergii Serhiienko ◽  
Oleksiy Chornyi

Purpose. Synthesis of an automatic control system for an asynchronous electric drive of a grain thrower conveyor based on a frequency converter with vector control. Methodology. The research was carried out using methods of mathematical modeling of an electric drive; using methods of tuning optimization and regulator synthesis. The technique of synthesis of vector control systems is based on the representation of a non-stationary multi-connected object, which is an AC machine, in the form of a set of stationary subobjects with linear links in the main control channels. Findings. The study of the work of the subordinate regulation system, which implements the principles of vector control, oriented along the vector of the rotor flux linkage, has been carried out. The modeling of the processes of AM excitation, AM start-up at idle speed, nominal load surge, speed reduction has been carried out. It was found that the synthesized system is characterized by good quality indicators. The overshoot at start does not exceed 5%, the regulation time is 0.4 s, the torque limitation is carried out at a predetermined level. It has been proven that oscillatory processes in transient modes with significant torque surges with classical settings of loop regulators can be compensated by introducing artificial cross-links into the control part of the electric drive. Originality. A system of subordinate regulation of the blood pressure of the grain thrower trimmer conveyor has been implemented to set the speed of the grain flow with the aim of throwing grain at a given distance by creating an appropriate ballistic flight trajectory, which ensures a reduction in losses from damage to grain. Practical value. The structure of the vector control system of a frequency-controlled asynchronous electric drive with additional compensating cross-connections between active and reactive energy control channels is proposed to improve the quality indicators of the system.


2022 ◽  
Vol 1211 (1) ◽  
pp. 012014
Author(s):  
Vladimir Vladimirovich Pikalov ◽  
Andrei Igorevich Boikov ◽  
Andrei Vitalievich Sdvizkov ◽  
Pavel Sergeevich Ponomarev

Abstract The article considers a vector control system for asynchronous electric drive of belt conveyors, which uses an adaptive observer to control the speed of the electric drive. This allows you to increase the reliability and inter-interval maintenance of the electric drive. The requirements for the observer are determined, its mathematical description is made, and the law of adaptation is determined. In the Matlab Simulink package, a computer simulation of the proposed sensor-free control system is performed. A study of the robustness of the actuator in terms of the drift of the parameters of the motor when powered from the inverter, expressed by the integral criterion for parametric robustness. Based on the results obtained, a comparison is made and conclusions are drawn about the advantages and disadvantages of using an adaptive observer in comparison with other types of observers.


Author(s):  
V. N. Meshcheryakov ◽  
D. S. Sibirtsev ◽  
S. Valtchev ◽  
E. I. Gracheva

THE PURPOSE. In controlled AC drives used on continuous-action mechanisms, which include conveyors, conveyors, cranes, the most widespread are asynchronous motors with a phase rotor, controlled mainly along the rotor circuit using various regulators with low energy efficiency. To improve the energy efficiency of an electric drive based on ADFR, it is proposed to develop a control system that combines the principles of frequency control of the motor along the stator circuit and powering the rotor circuit with constant voltage, which allows the electric drive to be considered synchronized. METHODS. The presence of a DC link in the frequency converter makes it possible in principle to connect the rotor winding in series to this link. However, in order to ensure the frequency principle of regulating the output characteristics of the electric drive, it will be necessary to regulate the rectified current at the input of the inverter and, accordingly, in the rotor windings, which will require a significant change in the standard control system of the frequency converter. The use of an additional adjustable switch in the DC link is proposed. RESULTS. The study of the proposed non-standard control system for a frequency asynchronous synchronized electric drive was carried out by the method of simulation modeling in the Matlab Simulink software package. CONCLUSION. A control system for a frequency asynchronous synchronized electric drive has been developed and investigated on a computer model. A correction system is proposed that allows maintaining a constant value of the load angle in the starting mode. The scalar system of relay frequency control of the electric drive is supplemented with vector correction of the variables, which makes it possible to continuously provide the necessary mutual orientation of the stator current vectors and the rotor flux linkage.


Author(s):  
V. N. Meshcheryakov ◽  
D. S. Sibirtsev ◽  
S. Valtchev ◽  
E. I. Gracheva

THE PURPOSE. In controlled AC drives used on continuous-action mechanisms, which include conveyors, conveyors, cranes, the most widespread are asynchronous motors with a phase rotor, controlled mainly along the rotor circuit using various regulators with low energy efficiency. To improve the energy efficiency of an electric drive based on ADFR, it is proposed to develop a control system that combines the principles of frequency control of the motor along the stator circuit and powering the rotor circuit with constant voltage, which allows the electric drive to be considered synchronized. METHODS. The presence of a DC link in the frequency converter makes it possible in principle to connect the rotor winding in series to this link. However, in order to ensure the frequency principle of regulating the output characteristics of the electric drive, it will be necessary to regulate the rectified current at the input of the inverter and, accordingly, in the rotor windings, which will require a significant change in the standard control system of the frequency converter. The use of an additional adjustable switch in the DC link is proposed. RESULTS. The study of the proposed non-standard control system for a frequency asynchronous synchronized electric drive was carried out by the method of simulation modeling in the Matlab Simulink software package. CONCLUSION. A control system for a frequency asynchronous synchronized electric drive has been developed and investigated on a computer model. A correction system is proposed that allows maintaining a constant value of the load angle in the starting mode. The scalar system of relay frequency control of the electric drive is supplemented with vector correction of the variables, which makes it possible to continuously provide the necessary mutual orientation of the stator current vectors and the rotor flux linkage.


2009 ◽  
Vol 80 (9) ◽  
pp. 491-497 ◽  
Author(s):  
E. A. Gurent’ev ◽  
Z. Sh. Ishmatov ◽  
Yu. V. Plotnikov

Sign in / Sign up

Export Citation Format

Share Document