scholarly journals Vector control system of electric drive of grain machine conveyor

Author(s):  
Evgeniia Burdilna ◽  
Sergii Serhiienko ◽  
Oleksiy Chornyi

Purpose. Synthesis of an automatic control system for an asynchronous electric drive of a grain thrower conveyor based on a frequency converter with vector control. Methodology. The research was carried out using methods of mathematical modeling of an electric drive; using methods of tuning optimization and regulator synthesis. The technique of synthesis of vector control systems is based on the representation of a non-stationary multi-connected object, which is an AC machine, in the form of a set of stationary subobjects with linear links in the main control channels. Findings. The study of the work of the subordinate regulation system, which implements the principles of vector control, oriented along the vector of the rotor flux linkage, has been carried out. The modeling of the processes of AM excitation, AM start-up at idle speed, nominal load surge, speed reduction has been carried out. It was found that the synthesized system is characterized by good quality indicators. The overshoot at start does not exceed 5%, the regulation time is 0.4 s, the torque limitation is carried out at a predetermined level. It has been proven that oscillatory processes in transient modes with significant torque surges with classical settings of loop regulators can be compensated by introducing artificial cross-links into the control part of the electric drive. Originality. A system of subordinate regulation of the blood pressure of the grain thrower trimmer conveyor has been implemented to set the speed of the grain flow with the aim of throwing grain at a given distance by creating an appropriate ballistic flight trajectory, which ensures a reduction in losses from damage to grain. Practical value. The structure of the vector control system of a frequency-controlled asynchronous electric drive with additional compensating cross-connections between active and reactive energy control channels is proposed to improve the quality indicators of the system.

2022 ◽  
Vol 1211 (1) ◽  
pp. 012014
Author(s):  
Vladimir Vladimirovich Pikalov ◽  
Andrei Igorevich Boikov ◽  
Andrei Vitalievich Sdvizkov ◽  
Pavel Sergeevich Ponomarev

Abstract The article considers a vector control system for asynchronous electric drive of belt conveyors, which uses an adaptive observer to control the speed of the electric drive. This allows you to increase the reliability and inter-interval maintenance of the electric drive. The requirements for the observer are determined, its mathematical description is made, and the law of adaptation is determined. In the Matlab Simulink package, a computer simulation of the proposed sensor-free control system is performed. A study of the robustness of the actuator in terms of the drift of the parameters of the motor when powered from the inverter, expressed by the integral criterion for parametric robustness. Based on the results obtained, a comparison is made and conclusions are drawn about the advantages and disadvantages of using an adaptive observer in comparison with other types of observers.


Author(s):  
V. N. Meshcheryakov ◽  
D. S. Sibirtsev ◽  
S. Valtchev ◽  
E. I. Gracheva

THE PURPOSE. In controlled AC drives used on continuous-action mechanisms, which include conveyors, conveyors, cranes, the most widespread are asynchronous motors with a phase rotor, controlled mainly along the rotor circuit using various regulators with low energy efficiency. To improve the energy efficiency of an electric drive based on ADFR, it is proposed to develop a control system that combines the principles of frequency control of the motor along the stator circuit and powering the rotor circuit with constant voltage, which allows the electric drive to be considered synchronized. METHODS. The presence of a DC link in the frequency converter makes it possible in principle to connect the rotor winding in series to this link. However, in order to ensure the frequency principle of regulating the output characteristics of the electric drive, it will be necessary to regulate the rectified current at the input of the inverter and, accordingly, in the rotor windings, which will require a significant change in the standard control system of the frequency converter. The use of an additional adjustable switch in the DC link is proposed. RESULTS. The study of the proposed non-standard control system for a frequency asynchronous synchronized electric drive was carried out by the method of simulation modeling in the Matlab Simulink software package. CONCLUSION. A control system for a frequency asynchronous synchronized electric drive has been developed and investigated on a computer model. A correction system is proposed that allows maintaining a constant value of the load angle in the starting mode. The scalar system of relay frequency control of the electric drive is supplemented with vector correction of the variables, which makes it possible to continuously provide the necessary mutual orientation of the stator current vectors and the rotor flux linkage.


Author(s):  
V. N. Meshcheryakov ◽  
D. S. Sibirtsev ◽  
S. Valtchev ◽  
E. I. Gracheva

THE PURPOSE. In controlled AC drives used on continuous-action mechanisms, which include conveyors, conveyors, cranes, the most widespread are asynchronous motors with a phase rotor, controlled mainly along the rotor circuit using various regulators with low energy efficiency. To improve the energy efficiency of an electric drive based on ADFR, it is proposed to develop a control system that combines the principles of frequency control of the motor along the stator circuit and powering the rotor circuit with constant voltage, which allows the electric drive to be considered synchronized. METHODS. The presence of a DC link in the frequency converter makes it possible in principle to connect the rotor winding in series to this link. However, in order to ensure the frequency principle of regulating the output characteristics of the electric drive, it will be necessary to regulate the rectified current at the input of the inverter and, accordingly, in the rotor windings, which will require a significant change in the standard control system of the frequency converter. The use of an additional adjustable switch in the DC link is proposed. RESULTS. The study of the proposed non-standard control system for a frequency asynchronous synchronized electric drive was carried out by the method of simulation modeling in the Matlab Simulink software package. CONCLUSION. A control system for a frequency asynchronous synchronized electric drive has been developed and investigated on a computer model. A correction system is proposed that allows maintaining a constant value of the load angle in the starting mode. The scalar system of relay frequency control of the electric drive is supplemented with vector correction of the variables, which makes it possible to continuously provide the necessary mutual orientation of the stator current vectors and the rotor flux linkage.


Author(s):  
Denis Krylov ◽  
Olga Kholod

The vast majority of electricity is used by industrial facilities in a converted form. At the same time, the use of semiconductor converters to obtain the required load parameters is intensively increasing. Current trends in the development and improvement of semiconductor converters are aimed at energy saving by improving their quality of work and reducing the impact on the power supply, load, and related consumers. Frequency converter with DC insert has become widespread and widely used. Its scheme is mainly based on an uncontrolled diode rectifier and an autonomous voltage inverter. Uncontrolled rectifiers are simple and reliable, but have two main disadvantages: the impossibility to recover electricity to the supply network and distortions of the source current shape. We can get rid of these disadvantages by using an active rectifier made according to the voltage source scheme instead of an uncontrolled rectifier. The operation of an active rectifier significantly depends on the type of its control system structure. This article aims to to improve the structure of the switches control system of the active rectifier scheme – voltage source built using a vector calculation algorithm; creation of a MatLab model of a three-phase active-controlled rectifier operating with a fixed modulation frequency and analysis of the influence of the input inductance value on the quality of its operation. The simulation results confirm that the improved structure of the vector control system proposed by the authors ensures high-quality operation of the active rectifier and electromagnetic compatibility of the frequency converter with the power supply network at the level allowed by the standards; simplification of the representation mathematical apparatus of the generalized vectors of currents and voltages at the construction of a vector control system of the active rectifier – voltage source practically did not influence qualitative indicators of the converter work in any way; a network filter must be used to eliminate the final distortions introduced into the source voltage by an additional nonlinear load.


Author(s):  
G.M. Simakov ◽  
◽  
V.V. Topovskiy ◽  
I.A. Ilyenkov ◽  
◽  
...  

With the development of electronic systems, the control of various asynchronous type electric motors is becoming more efficient and accurate. Such engines are used everywhere in the world, the variety of tasks performed by such mechanisms is growing every day, and the need for them is not decreasing. Nowadays, AC electric drive systems based on an asynchronous motor are becoming more widespread. This is due to the high reliability, simple design and relatively low cost of induction motors, as well as the rapid development of power converter technology, which makes it pos¬sible to create various types of semiconductor converters and reliable power supplies. In most cases, the vector control system is built for a pre-magnetized electric drive. This article discusses the synthesis of a vector control system for an asynchronous motor without preliminary magnetization, and also considers algorithms for vector control of an electromechanical unbalanced vibration module without preliminary magnetization of the asynchronous motor. Aim. To develop a control structure for an asynchronous motor of an unbalanced vibration module. Introduce a division link into the management structure. Synthesize a speed controller, rotor flux linkage and two components of the stator current. Compensate for the EMF action in the channels of the transverse and longitudinal axis. Provide the control system with the ability to reverse the electric machine. Implement the simulation of the resulting system and conduct a study of the results obtained, having obtained dynamic characteristics. Methods. The vector control system is constructed in the form of a stabilization channel of the rotor flux linkage module and a channel for controlling the rotor rotation speed. To achieve the desired result, we introduce a nonlinear regulator of the division link type into the control structure. This will convert the nonlinear structure to linear. Let's compensate the EMF action in the channels of the transverse and longitudinal axis. Having realized the simulation of the obtained system, we will conduct a study of the results obtained, having obtained dynamic characteristics. Results. Structural modeling was carried out in the MATLAB/Simulink software package. For the purpose of a comparative assessment of the synthesis results of a control system with a torque regulator in the form of a division link, a subordinate control system will also be synthesized, which has similar parameters of the power unit. Conclusion. The choice of the motor torque as the output coordinate makes it possible to significantly simplify the mathematical model of the induction motor. In addition to the features of the mathematical model of an asynchronous electric motor, in this work it is necessary to take into account the features of the vibration module as a load. In this case, two main features can be distinguished – a large moment of inertia of the flywheel masses of the electric drive, as well as a sinusoidal dependence of the moment of resistance on the angle of rotation of the rotor.


Author(s):  
Alexander Yudin ◽  
Vadim Nezhurin ◽  
Victor Kuvaiev

The results of the analysis of quality indicators of the proposed control systems for the electric drive of the DMZ ore yard with rheostatic tilt speed control, using alternative the system "thyristor converter - DC motor" and "frequency converter - induction motor", by studying the transients of these electric drive systems using the software product Matlab. It is established that the parameters of the control system "frequency converter - induction motor", are not inferior to the parameters of the control system "thyristor converter - DC motor", and even slightly exceed it, in particular, in the range of technological speeds of the wagon tipper drive, and energy losses during transient start-up processes are 2.3% less than the "thyristor converter - DC motor". It is expedient to use the offered decisions in case of modernization of the operating electric drive of the wagon tipper.


Sign in / Sign up

Export Citation Format

Share Document