scholarly journals The luteal blood flow, area and pixel intensity of corpus luteum, levels of progesterone in pregnant and nonpregnant mares in the period of 16 days after ovulation

2013 ◽  
Vol 58 (No. 11) ◽  
pp. 512-519 ◽  
Author(s):  
J. Šichtař ◽  
R. Rajmon ◽  
K. Hošková ◽  
D. Řehák ◽  
L. Vostrý ◽  
...  

The objective of the present study was to examine if luteal blood flow (LBF) monitoring could be used as an additional prognostic tool for early pregnancy diagnosis, and we particularly focused on the differences in LBF between pregnant and nonpregnant mares. Furthermore, other possible developmental differences of corpus luteum (CL) between pregnant and nonpregnant mares were evaluated. The CL (n = 119) of 27 mares were monitored once daily in B- and Power-Doppler Mode on days 1, 2, 9, 12, and 16 after ovulation (day 0 = ovulation). The data were evaluated using the MIXED Linear Model with repeated measures, and parameters were estimated by the REML method. The course of LBF, area of CL, and pixel intensity differed in nonpregnant mares on a day-to-day basis in contrast to more stable values in pregnant mares. Further, the profiles of the courses were identical until day 9, but since day 12 the differences between pregnant and nonpregnant mares started to be prominent. The LBF, pixel intensity, and level of progesterone (P4) were similar in all mares until day 16, when smaller LBF, lower pixel intensity, and lower levels of P4 were found in nonpregnant mares (P = 0.04, P = 0.02, P < 0.05, respectively). In pregnant and nonpregnant mares the LBF was weakly (r = 0.29 in both) and pixel intensity strongly (r = 0.48 and 0.59, respectively) correlated to the levels of P4. LBF was strongly correlated to the area of CL in pregnant as well as nonpregnant mares (r = 0.72 and 0.64, respectively). In accordance with the results presented in our study we can state that LBF monitoring is not a suitable tool for early pregnancy diagnosis or prognosis as the differences between pregnant and nonpregnant mares are notable – similarly to other indicators of CL status – just after the onset of luteolysis (day 16) when embryo itself is detectable.  

1996 ◽  
Vol 15 (9) ◽  
pp. 645-649 ◽  
Author(s):  
J L Alcázar ◽  
C Laparte ◽  
G López-Garcia

2009 ◽  
Vol 21 (1) ◽  
pp. 254
Author(s):  
A. Gaja ◽  
C. Kubota ◽  
T. Kojima

The present study aims to establish a novel practical protocol for early pregnancy diagnosis in cows by using transrectal ultrasonography. The protocol is based on measurements of corpus luteum (CL) cross-sectional area (CL c-s area) change performed at 2 separate days before the coming estrus after AI. Fourteen cows were inseminated artificially, and transrectal ultrasonographical observation of the ovaries and blood collection for measurement of peripheral plasma progesterone (P4) concentration were carried out daily from Days 12 to 23 (Day 0 = the day of onset of estrus). Thereafter, cows were routinely diagnosed for pregnancy at Day 30 by transrectal ultrasonography. The largest CL c-s area was obtained at Day 14 in both pregnant and non-pregnant cows. Seven out of 8 non-pregnant cows showed significant CL c-s area regression between Days 14 and 20 (422 ± 112 v. 249 ± 63 mm2), whereas no regression was observed between Days 14 and 20 in pregnant cows (416 ± 65 v. 402 ± 78 mm2). The regression in the CL c-s area between pregnant and non-pregnant cows was significantly different during Day 18 (424 ± 65 v. 288 ± 88 mm2) to Day 23 (402 ± 71 v. 139 ± 64 mm2). P4 concentration was significantly low (less than 1 ng mL–1) at Day 20 in 3 out of 8 non-pregnant cows, whereas the pregnant cows showed significant increase of P4 between Days 14 and 20 (2.6 ± 0.2 v. 3.4 ± 0.5 ng mL–1). The pregnant cows showed significantly higher P4 concentration starting from Day 18 than non-pregnant cows. However, in non-pregnant cows, 4 cows returned to estrus on Day 20 or after, 3 cows showed no signs of estrus, and 1 cow came in estrus as early as Day 18 after AI. In conclusion, the results of the present study suggest that measuring the change in the CL c-s area at Days 14 and 20 makes it possible to detect the non-pregnant cows at Day 20 after AI. However, it was also indicated that measuring the change of P4 concentrations on the same days did not always successfully detect non-pregnant cows. The new protocol based on CL c-s area regression rate can detect almost certainly non-pregnant cows at Day 20 after AI. It is suggested that this method is advantageous in research and industrial breeding.


2008 ◽  
Vol 90 (6) ◽  
pp. 2334-2339 ◽  
Author(s):  
Hiroshi Tamura ◽  
Akihisa Takasaki ◽  
Ken Taniguchi ◽  
Aki Matsuoka ◽  
Katsunori Shimamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document