scholarly journals Monitoring of genetic diversity in autochthonous Czech poultry breeds assessed by genealogical data

2020 ◽  
Vol 65 (No. 6) ◽  
pp. 224-231
Author(s):  
Luboš Vostrý ◽  
Hana Vostrá-Vydrová ◽  
Nina Moravčíková ◽  
Barbora Hofmanová ◽  
Jana Rychtářová ◽  
...  

Czech local poultry breeds face high risks of extinction. Because these populations are closed, they are more likely to lose genetic diversity. The aim of this analysis was to determine the loss of genetic diversity in three Czech autochthonous poultry breeds. Pedigree data from a total of 1 932 Czech Gold Speckled Hens, 325 Czech White Geese and 111 Czech Crested Geese registered in studbooks between 2000 and 2018 were evaluated. Data were analysed to determine the major factors that affect the genetic variability of these breeds. The average numbers of equivalent complete generations ranged from 2.53 to 4.82. The effective numbers of founders were from 29 to 59, representing from 43% to 62% of the total number of founders. The effective number of ancestors was estimated in the range of 21 to 41. The average inbreeding coefficient and relatedness coefficient (in parentheses) for the reference populations were 2.0% (6.5%), 1.9% (4.9%) and 2.1% (9.3%), respectively. The results showed that the effective population size derived from the rate of inbreeding ranged from 46 to 108 and if derived from the rate of coancestry it ranged from 35 to 74. With regard to these results, the analysed breeds showed a high probability of allele loss and consequent loss of genetic diversity.

2010 ◽  
Vol 90 (3) ◽  
pp. 331-340 ◽  
Author(s):  
M G Melka ◽  
F. Schenkel

Conservation of animal genetic resources entails judicious assessment of genetic diversity as a first step. The objective of this study was to analyze the trend of within-breed genetic diversity and identify major causes of loss of genetic diversity in four swine breeds based on pedigree data. Pedigree files from Duroc (DC), Hampshire (HP), Lacombe (LC) and Landrace (LR) containing 480 191, 114 871, 51 397 and 1 080 144 records, respectively, were analyzed. Pedigree completeness, quality and depth were determined. Several parameters derived from the in-depth pedigree analyses were used to measure trends and current levels of genetic diversity. Pedigree completeness indexes of the four breeds were 90.4, 52.7, 89.6 and 96.1%, respectively. The estimated percentage of genetic diversity lost within each breed over the last three decades was approximately 3, 22, 12 and 2%, respectively. The relative proportion of genetic diversity lost due to random genetic drift in DC, HP, LC and LR was 74.5, 63.6, 72.9 and 60.0%, respectively. The estimated current effective population size for DC, HP, LC and LR was 72, 14, 36 and 125, respectively. Therefore, HP and LC have been found to have lost considerable genetic diversity, demanding priority for conservation. Key words: Genetic drift, effective population size


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Anna Wirth ◽  
Jürgen Duda ◽  
Ottmar Distl

Increase of inbreeding and loss of genetic diversity have large impact on farm animal genetic resources. Therefore, the aims of the present study were to analyse measures of genetic diversity as well as recent and ancestral inbreeding using pedigree data of the German Brown population, and to identify causes for loss of genetic diversity. The reference population included 922,333 German Brown animals born from 1990 to 2014. Pedigree depth and completeness reached an average number of complete equivalent generations of 6.24. Estimated effective population size for the German Brown reference population was about 112 with a declining trend from 141 to 95 for the birth years. Individual inbreeding coefficients increased from 0.013 to 0.036. Effective number of founders, ancestors and founder genomes of 63.6, 36.23 and 20.34 indicated unequal contributions to the reference population. Thirteen ancestors explained 50% of the genetic diversity. Higher breed proportions of US Brown Swiss were associated with higher levels of individual inbreeding. Ancestral inbreeding coefficients, which are indicative for exposure of ancestors to identical-by-descent alleles, increased with birth years but recent individual inbreeding was higher than ancestral inbreeding. Given the increase of inbreeding and decline of effective population size, measures to decrease rate of inbreeding and increase effective population size through employment of a larger number of sires are advisable.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


2021 ◽  
Author(s):  
◽  
Kimberly Anne Miller

<p>As habitat loss, introduced predators, and disease epidemics threaten species worldwide, translocation provides one of the most powerful tools for species conservation. However, reintroduced populations of threatened species are often founded by a small number of individuals (typically 30 in New Zealand) and generally have low success rates. The loss of genetic diversity combined with inbreeding depression in a small reintroduced population could reduce the probability of establishment and persistence. Effective management of genetic diversity is therefore central to the success of reintroduced populations in both the short- and long-term. Using population modelling and empirical data from source and reintroduced populations of skinks and tuatara, I examined factors that influence inbreeding dynamics and the long-term maintenance of genetic diversity in translocated populations. The translocation of gravid females aided in increasing the effective population size after reintroduction. Models showed that supplementation of reintroduced populations reduced the loss of heterozygosity over 10 generations in species with low reproductive output, but not for species with higher output. Harvesting from a reintroduced population for a second-order translocation accelerated the loss of heterozygosity in species with low intrinsic rates of population growth. Male reproductive skew also accelerated the loss of genetic diversity over 10 generations, but the effect was only significant when the population size was small. Further, when populations at opposite ends of a species' historic range are disproportionately vulnerable to extinction and background inbreeding is high, genetic differentiation among populations may be an artefact of an historic genetic gradient coupled with rapid genetic drift. In these situations, marked genetic differences should not preclude hybridising populations to mitigate the risks of inbreeding after reintroduction. These results improve translocation planning for many species by offering guidelines for maximising genetic diversity in founder groups and managing populations to improve the long-term maintenance of diversity. For example, founder groups should be larger than 30 for  reintroductions of species with low reproductive output, high mortality rates after release, highly polygynous mating systems, and high levels of background inbreeding. This study also provides a basis for the development of more complex models of losses of genetic diversity after translocation and how genetic drift may affect the long-term persistence of these valuable  populations.</p>


2017 ◽  
Vol 57 (3) ◽  
pp. 422
Author(s):  
Derly Rodríguez Sarmiento ◽  
Emanuela Tullo ◽  
Rita Rizzi

Genetic variability and structure of the population were studied in 7949 registered Normande cattle in Colombia. The pedigree was deep with 18 traced generations, but there were some incomplete genealogical information for the cattle born in the more distant past. The average number of complete and equivalent complete generations was 2.42 and 5.21, respectively. The average pedigree completeness index for five generations was 0.62, which increased over time, and a significant difference between sexes was found (males: 0.82 ± 0.11; females: 0.62 ± 0.38). The average generation interval was 7.57 years. The number of founders, effective founders, ancestors, and founder genomes were 575, 115, 47, and 22.22, respectively, which suggests that an unequal use of founders and a random loss of alleles from founders occurred over time. The level of inbreeding was 0.019 and increased to 0.023, when the inbreeding coefficient was calculated by assigning inbreeding of contemporaries to founders. These levels of inbreeding lead to an effective population size of 138.5 and 117.9 and to a 0.36% and 0.42% rate of inbreeding, respectively. Out of 267 herds with more than five registered breeding animals, only one nucleus herd was present, whereas 117 and 119 were classified as multiplier and commercial herds, respectively. About 92% of calves were sired by French bulls; but the use of Colombian bulls for breeding is increasing. The Colombian Normande breed is at an acceptable level of genetic variability, although some losses of founder alleles have occurred. As the level of inbreeding has been increasing, inbreeding and mating strategies should be monitored in order to maintain the genetic diversity of the breed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258714
Author(s):  
Kristina Lehocká ◽  
Simon A. Black ◽  
Adrian Harland ◽  
Ondrej Kadlečík ◽  
Radovan Kasarda ◽  
...  

This study evaluates the diversity of the so-called ‘Moroccan Royal lions’ using genealogical information. Lions are no longer extant in North Africa, but the previous wild population was an important element of the now-recognised northern subspecies (Panthera leo leo) that ranged across West Africa, North Africa and the Middle East into India. The remaining captive population of ‘Moroccan Royal lions’ seems to be significantly endangered by the loss of diversity due to the effective population size decrease. The pedigree file of this captive lion population consisted of 454 individuals, while the reference population included 98 animals (47 males and 51 females). The completeness of the pedigree data significantly decreased with an increasing number of generations. The highest percentage of pedigree completeness (over 70%) was achieved in the first generation of the reference population. Pedigree-based parameters derived from the common ancestor and gene origin were used to estimate the state of diversity. In the reference population, the average inbreeding coefficient was 2.14%, while the individual increase in inbreeding over generations was 2.31%. Overall, the reference population showed lower average inbreeding and average relatedness compared with the pedigree file. The number of founders (47), the effective number of founders (24) and the effective number of ancestors (22) were estimated in the reference population. The effective population size of 14.02 individuals confirms the critically endangered status of the population and rapid loss of diversity in the future. Thus, continuous monitoring of the genetic diversity of the ‘Moroccan Royal lion’ group is required, especially for long-term conservation management purposes, as it would be an important captive group should further DNA studies establish an affinity to P. leo leo.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 227-228
Author(s):  
Arina I Mishina ◽  
Alexandra S Abdelmanova ◽  
Arsen V Dotsev ◽  
Alexander A Sermyagin ◽  
Gottfried Brem ◽  
...  

Abstract Drastic decline of population size of Russian local cattle breeds observed during last three decades has led to the decrease of genetic diversity. Due to the limited number of bulls used for artificial insemination, inbreeding in herds can be increased, which can lead to the decrease of reproduction capacity and adaptability of animals. Our aim was to assess genomic inbreeding in two Russian local cattle breeds, including Kholmogor (n = 26) and Istoben (n = 21). Two transboundary cattle breeds used for milk production in Russia including Holstein (n = 49) and Simmental (n = 38) were chosen for comparison. SNP genotyping was performed using the Bovine GGP 150K BeadArray (Illumina, CA, USA). After the quality control, 117591 autosomal SNPs were selected for analyzes. The degree of genomic inbreeding was assessed by calculations of inbreeding coefficient based on run of homozygosity (F(ROH)) and multilocus heterozygosity (sMLH). We found the strong negative correlations between the F(ROH) and sMLH values in animals of all of studied breeds (r2 = -0.805). The average F(ROH) values were 0.065 &lt; mo &gt;±&lt; /mo &gt;&lt; /math &gt;“&gt;±± 0.003 for Kholmogor, 0.048 &lt; mo &gt;±&lt; /mo &gt;&lt; /math &gt;“&gt;±± 0.006 for Istoben, 0.129 &lt; mo &gt;±&lt; /mo &gt;&lt; /math &gt;“&gt;±± 0.007 for Holstein, and 0.102 &lt; mo &gt;±&lt; /mo &gt;&lt; /math &gt;“&gt;±± 0.007 for Simmental breed. The sMLH values in Kholmogor, Istoben, Holstein and Simmental breeds varied from 0,99 to 1,076, from 0,829 to 1,102, from 0,890 to 1,069 and from 0,866 to 1,041, and averaged to 1.030, 1.013, 1.000, and 0.974, respectively. According to our research results, two studied Russian cattle breeds are characterized by lower levels of genomic inbreeding compared to transboundary cattle breeds. Our results will be helpful for developing the conservation programs for Russian Kholmogor and Istoben cattle breeds. The study was funded by the Russian Ministry of Science and Higher Education within theme No. 0445-2019-0024 and RFBR within project 19-316-90017 (the study of Kholmogor cattle).


2021 ◽  
Author(s):  
◽  
Kimberly Anne Miller

<p>As habitat loss, introduced predators, and disease epidemics threaten species worldwide, translocation provides one of the most powerful tools for species conservation. However, reintroduced populations of threatened species are often founded by a small number of individuals (typically 30 in New Zealand) and generally have low success rates. The loss of genetic diversity combined with inbreeding depression in a small reintroduced population could reduce the probability of establishment and persistence. Effective management of genetic diversity is therefore central to the success of reintroduced populations in both the short- and long-term. Using population modelling and empirical data from source and reintroduced populations of skinks and tuatara, I examined factors that influence inbreeding dynamics and the long-term maintenance of genetic diversity in translocated populations. The translocation of gravid females aided in increasing the effective population size after reintroduction. Models showed that supplementation of reintroduced populations reduced the loss of heterozygosity over 10 generations in species with low reproductive output, but not for species with higher output. Harvesting from a reintroduced population for a second-order translocation accelerated the loss of heterozygosity in species with low intrinsic rates of population growth. Male reproductive skew also accelerated the loss of genetic diversity over 10 generations, but the effect was only significant when the population size was small. Further, when populations at opposite ends of a species' historic range are disproportionately vulnerable to extinction and background inbreeding is high, genetic differentiation among populations may be an artefact of an historic genetic gradient coupled with rapid genetic drift. In these situations, marked genetic differences should not preclude hybridising populations to mitigate the risks of inbreeding after reintroduction. These results improve translocation planning for many species by offering guidelines for maximising genetic diversity in founder groups and managing populations to improve the long-term maintenance of diversity. For example, founder groups should be larger than 30 for  reintroductions of species with low reproductive output, high mortality rates after release, highly polygynous mating systems, and high levels of background inbreeding. This study also provides a basis for the development of more complex models of losses of genetic diversity after translocation and how genetic drift may affect the long-term persistence of these valuable  populations.</p>


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2013
Author(s):  
Ivona Djurkin Kušec ◽  
Ivica Bošković ◽  
Minja Zorc ◽  
Kristina Gvozdanović ◽  
Dubravko Škorput ◽  
...  

Istrian shorthaired hound is an old indigenous Croatian dog breed with historical traces of its origin, which date back to the 14th century. Due to its intelligence and great hunting abilities, it is considered an excellent hunting dog. Despite its ancient origin, there is no data on genetic diversity, population structure, and degree of inbreeding that could be used for advanced management and conservation of this breed. Our study aimed to provide a high-resolution population structure of the Istrian shorthaired hound using a 220K HD SNP array, to compare the obtained data with the genealogical records and to place the breed in a broader context of world dog populations. Relatively high population size and low inbreeding coefficient estimated from genealogical data indicate a preserved genetic diversity in this breed. The principle component analysis, the NeighborNet network, and TreeMix were used to determine the genetic relationship between the Istrian shorthaired hound and other breeds. The Istrian shorthaired hound was found to be genetically related to Italian hunting dogs sharing the same branch with the Segugio Italiano a Pelo Raso and Segugio Italiano a Pelo Forte. The ADMIXTURE analysis indicated that the Istrian shorthaired hound could be involved in the development of some other hunting dog breeds. The estimated effective population size (Ne) based on SNP data was similar to Ne calculated from genealogical data indicating the absence of bottlenecks and well-balanced use of breeding animals. The low genomic inbreeding coefficient, together with the higher number of short runs of homozygosity, observed in the Istrian shorthaired hound, confirms the ancient origin of the breed based on historical documents. The analysis of selective sweeps identified genomic regions with the strongest selection signals in the vicinity of the genes associated with cognitive performance and behavior. Genome analysis proved to be a useful tool for estimating population parameters and can be implemented in the conservation plan for this indigenous breed.


Sign in / Sign up

Export Citation Format

Share Document