captive population
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 48)

H-INDEX

15
(FIVE YEARS 3)

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 54
Author(s):  
Patricia Escalante-Pliego ◽  
Noemí Matías-Ferrer ◽  
Patricia Rosas-Escobar ◽  
Gabriela Lara-Martínez ◽  
Karol Sepúlveda-González ◽  
...  

Given the interest in the conservation of the Mesoamerican scarlet macaw (Ara macao cyanoptera), the Xcaret Park formed an initial reproductive population about 30 years ago, which has progressively grown to a considerable population in captivity. In this work, we focus on the evaluation of the genetic diversity of the captive population, taking two groups into account: its founding (49) and the current breeding individuals (166). The genetic analysis consisted of genotyping six nuclear microsatellite loci that are characterized by their high variability. Tests for all loci revealed a Hardy–Weinberg equilibrium in four loci of the founders and in no loci of the breeding groups. The results showed that the genetic variation in the Xcaret population was relatively high (founders He = 0.715 SE = 0.074, breeding pairs He = 0.763 SE = 0.050), with an average polymorphism of 7.5 (4–10) alleles per locus in founders and 8.3 (4–14) in breeding pairs. No significant differences in the evaluated genetic diversity indexes were found between both groups. This indicates that the genetic variability in Xcaret has been maintained, probably due to the high number of pairs and the reproductive management strategy. Bayesian analysis revealed five different genetic lineages present in different proportions in the founders and in the breeding pairs, but no population structure was observed between founders and breeding individuals. The analyzed captive individuals showed levels of genetic diversity comparable to reported values from Ara macao wild populations. These data indicate that the captive population has maintained a similar genetic diversity as the metapopulation in the Mayan Forest and is an important resource for reintroduction projects, some of which began more than five years ago and are still underway.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0258714
Author(s):  
Kristina Lehocká ◽  
Simon A. Black ◽  
Adrian Harland ◽  
Ondrej Kadlečík ◽  
Radovan Kasarda ◽  
...  

This study evaluates the diversity of the so-called ‘Moroccan Royal lions’ using genealogical information. Lions are no longer extant in North Africa, but the previous wild population was an important element of the now-recognised northern subspecies (Panthera leo leo) that ranged across West Africa, North Africa and the Middle East into India. The remaining captive population of ‘Moroccan Royal lions’ seems to be significantly endangered by the loss of diversity due to the effective population size decrease. The pedigree file of this captive lion population consisted of 454 individuals, while the reference population included 98 animals (47 males and 51 females). The completeness of the pedigree data significantly decreased with an increasing number of generations. The highest percentage of pedigree completeness (over 70%) was achieved in the first generation of the reference population. Pedigree-based parameters derived from the common ancestor and gene origin were used to estimate the state of diversity. In the reference population, the average inbreeding coefficient was 2.14%, while the individual increase in inbreeding over generations was 2.31%. Overall, the reference population showed lower average inbreeding and average relatedness compared with the pedigree file. The number of founders (47), the effective number of founders (24) and the effective number of ancestors (22) were estimated in the reference population. The effective population size of 14.02 individuals confirms the critically endangered status of the population and rapid loss of diversity in the future. Thus, continuous monitoring of the genetic diversity of the ‘Moroccan Royal lion’ group is required, especially for long-term conservation management purposes, as it would be an important captive group should further DNA studies establish an affinity to P. leo leo.


2021 ◽  
Author(s):  
◽  
Thomas Edward Allan

<p>Key aspects of the captive husbandry of Powelliphanta augusta, a newly-described New Zealand land snail are investigated: how they should be managed and fed to provide individuals for release, and how a long-term captive population can be maintained as an insurance against extinction in the wild. This project arises from almost all members of this species having been brought into captivity due to their displacement in the wild by an opencast coalmine. Powelliphanta (F: Rhytididae) is a genus of endemic carnivorous snails, which includes 10 species, 27 subspecies and numerous undescribed taxa. As well as its diversity, Powelliphanta is renowned for the large size of its members (up to 90mm diameter) and their attractively-patterned shells. Most taxa are threatened due to habitat loss and predation by introduced mammalian predators. The study commences with a literature review to refine husbandry methods and to assess requirements for captive breeding of snails. From this review investigations are made into stocking densities, substrate, reproductive biology, body condition and growth of the P. augusta captive population. To determine an appropriate stocking density for P. augusta groups of six snails were kept at two densities; with either 720cm2, or 1440cm2 per group. Survival and weight gain were compared over 52 weeks. There was no difference in weight gain between treatments, but survival was significantly reduced at the highest density. The agent responsible for mortality was not identified, but previous studies on snails implicate disease. The effect of calcium supplementation on reproductive output was assessed by introducing limestone chip to the captive substrate of sphagnum moss. The experiment was aborted after eight months because of the apparently lethal effects of treatment. Egg production during this time was negligible, probably due to the lack of appropriate environmental cues. P. augusta showed evidence of size-specific fecundity, with a significant increase in clutch size with parental shell volume. Size-specific fecundity is predicted to cause size-assortative mating, but experiments determined that mate-choice is random with respect to shell size.Body condition was studied using the residuals from a regression of mass and size at time of capture. Condition in the wild showed strong seasonal variation, with a high in December and January. Body condition in captive snails remained stable, at a level equivalent to the peak of condition in the wild. The growth of captive snails was modeled using a Gompertz curve. Using a 30mm shell diameter as a reproductive indicator, snails hatching in captivity are predicted to reach maturity in approximately eight years. The study concludes by discussing the implications of the research for husbandry. Updates and expansions to the analyses are suggested, as well as methods for effectively monitoring the captive population.</p>


2021 ◽  
Author(s):  
◽  
Thomas Edward Allan

<p>Key aspects of the captive husbandry of Powelliphanta augusta, a newly-described New Zealand land snail are investigated: how they should be managed and fed to provide individuals for release, and how a long-term captive population can be maintained as an insurance against extinction in the wild. This project arises from almost all members of this species having been brought into captivity due to their displacement in the wild by an opencast coalmine. Powelliphanta (F: Rhytididae) is a genus of endemic carnivorous snails, which includes 10 species, 27 subspecies and numerous undescribed taxa. As well as its diversity, Powelliphanta is renowned for the large size of its members (up to 90mm diameter) and their attractively-patterned shells. Most taxa are threatened due to habitat loss and predation by introduced mammalian predators. The study commences with a literature review to refine husbandry methods and to assess requirements for captive breeding of snails. From this review investigations are made into stocking densities, substrate, reproductive biology, body condition and growth of the P. augusta captive population. To determine an appropriate stocking density for P. augusta groups of six snails were kept at two densities; with either 720cm2, or 1440cm2 per group. Survival and weight gain were compared over 52 weeks. There was no difference in weight gain between treatments, but survival was significantly reduced at the highest density. The agent responsible for mortality was not identified, but previous studies on snails implicate disease. The effect of calcium supplementation on reproductive output was assessed by introducing limestone chip to the captive substrate of sphagnum moss. The experiment was aborted after eight months because of the apparently lethal effects of treatment. Egg production during this time was negligible, probably due to the lack of appropriate environmental cues. P. augusta showed evidence of size-specific fecundity, with a significant increase in clutch size with parental shell volume. Size-specific fecundity is predicted to cause size-assortative mating, but experiments determined that mate-choice is random with respect to shell size.Body condition was studied using the residuals from a regression of mass and size at time of capture. Condition in the wild showed strong seasonal variation, with a high in December and January. Body condition in captive snails remained stable, at a level equivalent to the peak of condition in the wild. The growth of captive snails was modeled using a Gompertz curve. Using a 30mm shell diameter as a reproductive indicator, snails hatching in captivity are predicted to reach maturity in approximately eight years. The study concludes by discussing the implications of the research for husbandry. Updates and expansions to the analyses are suggested, as well as methods for effectively monitoring the captive population.</p>


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12212
Author(s):  
Deepanwita Purohit ◽  
Shivakumara Manu ◽  
Muthuvarmadam Subramanian Ram ◽  
Shradha Sharma ◽  
Harika Chinchilam Patnaik ◽  
...  

Long-term captive populations often accumulate genetic changes that are detrimental to their survival in the wild. Periodic genetic evaluation of captive populations is thus necessary to identify deleterious changes and minimize their impact through planned breeding. Pygmy hog (Porcula salvania) is an endangered species with a small population inhabiting the tall sub-Himalayan grasslands of Assam, India. A conservation breeding program of pygmy hog from six founders has produced a multi-generational captive population destined for reintroduction into the wild. However, the impact of conservation breeding on its genetic diversity remained undocumented. Here, we evaluate temporal genetic changes in 39 pygmy hogs from eight consecutive generations of a captive population using genome-wide SNPs, mitochondrial genomes, and MHC sequences, and explore the relationship between genetic diversity and reproductive success. We find that pygmy hog harbors a very low genome-wide heterozygosity (H) compared to other members of the Suidae family. However, within the captive population we find excess heterozygosity and a significant increase in H from the wild-caught founders to the individuals in subsequent generations due to the selective pairing strategy. The MHC and mitochondrial nucleotide diversities were lower in captive generations compared to the founders with a high prevalence of low-frequency MHC haplotypes and more unique mitochondrial genomes. Further, even though no signs of genetic inbreeding were observed from the estimates of individual inbreeding coefficient F and between individuals (FIS) in each generation, the kinship coefficient showed a slightly increasing trend in the recent generations, due to a relatively smaller non-random sample size compared to the entire captive population. Surprisingly, male pygmy hogs that had higher heterozygosity also showed lower breeding success. We briefly discuss the implications of our findings in the context of breeding management and recommend steps to minimize the genetic effects of long-term captive breeding.


Author(s):  
Tom Sarraude ◽  
Bin-Yan Hsu ◽  
Suvi Ruuskanen ◽  
Ton Groothuis

Maternal hormones constitute a key signalling pathway for mothers to shape offspring phenotype and fitness. Thyroid hormones (THs; triiodothyronine, T3 and thyroxine, T4) are metabolic hormones known to play crucial roles in embryonic development and survival in all vertebrates. During early developmental stages, embryos exclusively rely on the exposure to maternal THs, and maternal hypothyroidism can cause severe embryonic maldevelopment. The TH molecule includes iodine, an element that cannot be synthesised by the organism. Therefore, TH production may become costly when environmental iodine availability is low. This may yield a trade-off for breeding females between allocating the hormones to self or to their eggs, potentially to the extent that it even influences the number of laid eggs. In this study, we investigated whether low dietary iodine may limit TH production and transfer to the eggs in a captive population of Rock pigeons (Columba livia). We provided breeding females with an iodine-restricted (I- diet) or iodine-supplemented diet (I+ diet) and measured the resulting circulating and yolk iodine and TH concentrations and the number of eggs laid. Our iodine-restricted diet successfully decreased both circulating and yolk iodine concentrations compared to the supplemented diet, but not circulating or yolk THs. This indicates that mothers may not be able to independently regulate hormone exposure for self and their embryos. However, egg production was clearly reduced in the I- group, with fewer females laying eggs. This result shows that restricted availability of iodine does induce a cost in terms of egg production. Whether females reduced egg production to preserve THs for themselves or to prevent embryos from exposure to low iodine and/or THs is as yet unclear.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1463
Author(s):  
Cassandra M. Miller-Butterworth ◽  
Karen Vacco ◽  
Amy L. Russell ◽  
Joseph C. Gaspard

African painted dogs (Lycaon pictus, APD) are highly endangered, with fewer than 7000 remaining in nature. Captive breeding programs can preserve a genetically diverse population and provide a source of individuals for reintroductions. However, most programs are initiated from few founders and suffer from low genetic diversity and inbreeding. The aims of this study were to use molecular markers to assess genetic variation, inbreeding, and relatedness among APDs in the North American captive population, to use these data to realign studbook records, and to compare these data to wild populations and to the European captive population to facilitate the development of a global management plan. We sequenced mitochondrial and major histocompatibility (MHC) class II loci and genotyped 14 microsatellite loci from 109 APDs from 34 institutions in North America. We identified three likely studbook errors and resolved ten cases of uncertain paternity. Overall, microsatellite heterozygosity was higher than reported in Europe, but effective population size estimates were lower. Mitochondrial sequence variation was extremely limited, and there were fewer MHC haplotypes than in Europe or the wild. Although the population did not show evidence of significant inbreeding overall, several individuals shared high relatedness values, which should be incorporated into future breeding programs.


2021 ◽  
Author(s):  
Lina Giraldo-Deck ◽  
Jasmine Loveland ◽  
Wolfgang Goymann ◽  
Barbara Tschirren ◽  
Terry Burke ◽  
...  

Abstract Chromosomal inversions frequently underlie major phenotypic variation maintained by divergent selection within and between sexes. Here we examine whether and how intralocus conflicts contribute to balancing selection stabilizing an autosomal inversion polymorphism in the ruff Calidris pugnax. In this lekking shorebird, three male mating morphs (Independents, Satellites and Faeders) are associated with an inversion-based supergene. We show that in a captive population, Faeder females, who are smaller and whose inversion haplotype has not undergone recombination, have lower average reproductive success in terms of laying rate, egg size and offspring survival than Independent females, who lack the inversion. Satellite females, who carry a recombined inversion haplotype and have intermediate body size, more closely resemble Independent than Faeder females in reproductive performance. We inferred that the lower reproductive output of Faeder females is primarily balanced by higher than average reproductive success of individual Faeder males, driven by negative frequency-dependent selection. These findings suggest that intralocus conflicts may play a major role in the evolution and maintenance of supergene variants.


2021 ◽  
Vol 02 (01) ◽  
Author(s):  
Mohd Faudzir Najmuddin ◽  
◽  
Siti Hasmaliza Hassem ◽  
Nurhizatul Safikah Mohd Hauri ◽  
Fatin Zahari ◽  
...  

Crocodylus porosus is the largest species of crocodile and can be found in estuarine and riverine area in Malaysia. Crocodile in captivity can be found in Malaysia for various purposes such as tourism, conservation and leather industry. However, the management practice in established crocodile farm varies across park for example in terms of feeding regime. Thus, this study focusses on the feeding regime of C. porosus in captivity and evaluation of management of crocodile of Teluk Sengat Crocodile Farm. This study was carried out for 35 days in two different ponds of Teluk Sengat Crocodile Farm, Kota Tinggi, Johor. The results show majority of the food given to crocodile were chicken (64%), followed by fish (28%) and prawn (8%). Prawn was only given to juvenile crocodile every day, while fish and whole chicken were given to adult crocodile once a week. The feeding frequency are adequate for the juvenile crocodile however, the feeding quantity for adult pond are worrying. Future research should be conducted on other captive population of C. porosus in other areas in Malaysia as well to better understand the overall management practices in Malaysia.


Zoo Biology ◽  
2021 ◽  
Author(s):  
Patrick T. Freeman ◽  
Erica L. Anderson ◽  
Kristin B. Allen ◽  
Caitlin E. O'Connell‐Rodwell

Sign in / Sign up

Export Citation Format

Share Document