scholarly journals PROBLEMS OF INTERPRETATION OF JAZZ STYLE ON THE EXAMPLE OF Prelude No. 2 FROM THE CYCLE “24 Preludes for Pianos” OR. 58 NICHOLAS KAPUSTIN

Author(s):  
Daria Ionkina ◽  
Keyword(s):  
2014 ◽  
Vol 4 (2) ◽  
pp. 477-483
Author(s):  
Debojyoti Halder

Sunspots are temporary phenomena on the photosphere of the Sun which appear visibly as dark spots compared to surrounding regions. Sunspot populations usually rise fast but fall more slowly when observed for any particular solar cycle. The sunspot numbers for the current cycle 24 and the previous three cycles have been plotted for duration of first four years for each of them. It appears that the value of peak sunspot number for solar cycle 24 is smaller than the three preceding cycles. When regression analysis is made it exhibits a trend of slow rising phase of the cycle 24 compared to previous three cycles. Our analysis further shows that cycle 24 is approaching to a longer-period but with smaller occurrences of sunspot number.


Solar Physics ◽  
2015 ◽  
Vol 290 (5) ◽  
pp. 1417-1427 ◽  
Author(s):  
A. Shanmugaraju ◽  
M. Syed Ibrahim ◽  
Y.-J. Moon ◽  
A. Mujiber Rahman ◽  
S. Umapathy

Solar Physics ◽  
2014 ◽  
Vol 290 (2) ◽  
pp. 635-643 ◽  
Author(s):  
H. S. Ahluwalia ◽  
R. C. Ygbuhay
Keyword(s):  

Space Weather ◽  
2017 ◽  
Vol 15 (12) ◽  
pp. 1649-1660 ◽  
Author(s):  
E. M. B. Thiemann ◽  
M. Dominique ◽  
M. D. Pilinski ◽  
F. G. Eparvier

2021 ◽  
Vol 65 (6) ◽  
pp. 507-517
Author(s):  
S. A. Yazev ◽  
E. S. Isaeva ◽  
Yu. V. Ishmukhametova

2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Ioannis A. Daglis ◽  
Afroditi Nasi ◽  
Constantinos Papadimitriou ◽  
Marina Georgiou

<p>Radial diffusion has been established as one of the most important mechanisms contributing the acceleration and loss of relativistic electrons in the outer radiation belt. Over the past few years efforts have been devoted to provide empirical relationships of radial diffusion coefficients (D<sub>LL</sub>) for radiation belt simulations yet several studies have suggested that the difference between the various models can be orders of magnitude different at high levels of geomagnetic activity as the observed D<sub>LL</sub> have been shown to be highly event-specific. In the frame of SafeSpace project we have used 12 years (2009 – 2020) of multi-point magnetic and electric field measurements from THEMIS A, D and E satellites to create a database of calculated D<sub>LL</sub>. In this work we present the first statistics on the evolution of D<sub>LL </sub>during the various phases of Solar cycle 24 with respect to the various solar wind parameters and geomagnetic indices.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437.</p>


Sign in / Sign up

Export Citation Format

Share Document