scholarly journals Vertical Thermospheric Density Profiles From EUV Solar Occultations Made by PROBA2 LYRA for Solar Cycle 24

Space Weather ◽  
2017 ◽  
Vol 15 (12) ◽  
pp. 1649-1660 ◽  
Author(s):  
E. M. B. Thiemann ◽  
M. Dominique ◽  
M. D. Pilinski ◽  
F. G. Eparvier
2014 ◽  
Vol 4 (2) ◽  
pp. 477-483
Author(s):  
Debojyoti Halder

Sunspots are temporary phenomena on the photosphere of the Sun which appear visibly as dark spots compared to surrounding regions. Sunspot populations usually rise fast but fall more slowly when observed for any particular solar cycle. The sunspot numbers for the current cycle 24 and the previous three cycles have been plotted for duration of first four years for each of them. It appears that the value of peak sunspot number for solar cycle 24 is smaller than the three preceding cycles. When regression analysis is made it exhibits a trend of slow rising phase of the cycle 24 compared to previous three cycles. Our analysis further shows that cycle 24 is approaching to a longer-period but with smaller occurrences of sunspot number.


Solar Physics ◽  
2015 ◽  
Vol 290 (5) ◽  
pp. 1417-1427 ◽  
Author(s):  
A. Shanmugaraju ◽  
M. Syed Ibrahim ◽  
Y.-J. Moon ◽  
A. Mujiber Rahman ◽  
S. Umapathy

2017 ◽  
Vol 44 (21) ◽  
Author(s):  
Robin Ramstad ◽  
Stas Barabash ◽  
Yoshifumi Futaana ◽  
Masatoshi Yamauchi ◽  
Hans Nilsson ◽  
...  

2021 ◽  
pp. 3759-3771
Author(s):  
Ja'far M. Ja’far ◽  
Khalid A. Hadi

        In this research, an investigation for the compatibility of the IRI-2016 and ASAPS international models was conducted to evaluate their accuracy in predicting the ionospheric critical frequency parameter (foF2) for the years 2009 and 2014 that represent the minimum and maximum years of solar cycle 24. The calculations of the monthly average foF2 values were performed for three different selected stations distributed over the mid-latitude region. These stations are Athens - Greece (23.7o E, 37.9 o N), El Arenosillo - Spain (-6.78 o E, 37.09 o N), and Je Ju - South Korea (124.53 o E, 33.6 o N). The calculated values using the two tested models were compared with the observed foF2 datasets for each of the three selected locations. The results showed that the two tested models gave good and close results for all selected stations compared to the observed data for the studied period of time. At the minimum solar cycle 24, the ASAPS model showed in general better values than the IRI-2016 model at Athens, El Arenosillo and Je Ju stations for all tested methods. At maximum solar cycle 24, the IRI-2016 model showed higher and closer values to the observed data at Athens and El Arenosillo stations, while the ASAPS model showed better values at Je Ju station.


2020 ◽  
Vol 645 ◽  
pp. A2
Author(s):  
M. Meftah ◽  
M. Snow ◽  
L. Damé ◽  
D. Bolseé ◽  
N. Pereira ◽  
...  

Context. Solar spectral irradiance (SSI) is the wavelength-dependent energy input to the top of the Earth’s atmosphere. Solar ultraviolet (UV) irradiance represents the primary forcing mechanism for the photochemistry, heating, and dynamics of the Earth’s atmosphere. Hence, both temporal and spectral variations in solar UV irradiance represent crucial inputs to the modeling and understanding of the behavior of the Earth’s atmosphere. Therefore, measuring the long-term solar UV irradiance variations over the 11-year solar activity cycle (and over longer timescales) is fundamental. Thus, each new solar spectral irradiance dataset based on long-term observations represents a major interest and can be used for further investigations of the long-term trend of solar activity and the construction of a homogeneous solar spectral irradiance record. Aims. The main objective of this article is to present a new solar spectral irradiance database (SOLAR-v) with the associated uncertainties. This dataset is based on solar UV irradiance observations (165−300 nm) of the SOLAR/SOLSPEC space-based instrument, which provides measurements of the full-disk SSI during solar cycle 24. Methods. SOLAR/SOLSPEC made solar acquisitions between April 5, 2008 and February 10, 2017. During this period, the instrument was affected by the harsh space environment that introduces instrumental trends (degradation) in the SSI measurements. A new method based on an adaptation of the Multiple Same-Irradiance-Level (MuSIL) technique was used to separate solar variability and any uncorrected instrumental trends in the SOLAR/SOLSPEC UV irradiance measurements. Results. A new method for correcting degradation has been applied to the SOLAR/SOLSPEC UV irradiance records to provide new solar cycle variability results during solar cycle 24. Irradiances are reported at a mean solar distance of 1 astronomical unit (AU). In the 165−242 nm spectral region, the SOLAR/SOLSPEC data agrees with the observations (SORCE/SOLSTICE) and models (SATIRE-S, NRLSSI 2) to within the 1-sigma error envelope. Between 242 and 300 nm, SOLAR/SOLSPEC agrees only with the models.


Sign in / Sign up

Export Citation Format

Share Document